Fix coef_ and intercept_ signature to be compatible with sklearn.RFECV (#3873)
* Fix coef_ and intercept_ signature to be compatible with sklearn.RFECV * Fix lint * Fix lint
This commit is contained in:
parent
19ee0a3579
commit
ad6e0d55f1
@ -535,13 +535,21 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
Returns
|
||||
-------
|
||||
coef_ : array of shape ``[n_features]``
|
||||
coef_ : array of shape ``[n_features]`` or ``[n_classes, n_features]``
|
||||
"""
|
||||
if self.booster != 'gblinear':
|
||||
raise AttributeError('Coefficients are not defined for Booster type {}'
|
||||
.format(self.booster))
|
||||
b = self.get_booster()
|
||||
return json.loads(b.get_dump(dump_format='json')[0])['weight']
|
||||
coef = np.array(json.loads(b.get_dump(dump_format='json')[0])['weight'])
|
||||
# Logic for multiclass classification
|
||||
n_classes = getattr(self, 'n_classes_', None)
|
||||
if n_classes is not None:
|
||||
if n_classes > 2:
|
||||
assert len(coef.shape) == 1
|
||||
assert coef.shape[0] % n_classes == 0
|
||||
coef = coef.reshape((n_classes, -1))
|
||||
return coef
|
||||
|
||||
@property
|
||||
def intercept_(self):
|
||||
@ -556,13 +564,13 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
Returns
|
||||
-------
|
||||
intercept_ : array of shape ``[n_features]``
|
||||
intercept_ : array of shape ``(1,)`` or ``[n_classes]``
|
||||
"""
|
||||
if self.booster != 'gblinear':
|
||||
raise AttributeError('Intercept (bias) is not defined for Booster type {}'
|
||||
.format(self.booster))
|
||||
b = self.get_booster()
|
||||
return json.loads(b.get_dump(dump_format='json')[0])['bias']
|
||||
return np.array(json.loads(b.get_dump(dump_format='json')[0])['bias'])
|
||||
|
||||
|
||||
class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
|
||||
@ -544,3 +544,36 @@ def test_save_load_model():
|
||||
err = sum(1 for i in range(len(preds))
|
||||
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
||||
assert err < 0.1
|
||||
|
||||
|
||||
def test_RFECV():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.feature_selection import RFECV
|
||||
|
||||
# Regression
|
||||
X, y = load_boston(return_X_y=True)
|
||||
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
|
||||
n_estimators=10, n_jobs=1, objective='reg:linear',
|
||||
random_state=0, silent=True)
|
||||
rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='neg_mean_squared_error')
|
||||
rfecv.fit(X, y)
|
||||
|
||||
# Binary classification
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
|
||||
n_estimators=10, n_jobs=1, objective='binary:logistic',
|
||||
random_state=0, silent=True)
|
||||
rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='roc_auc')
|
||||
rfecv.fit(X, y)
|
||||
|
||||
# Multi-class classification
|
||||
X, y = load_iris(return_X_y=True)
|
||||
bst = xgb.XGBClassifier(base_score=0.4, booster='gblinear', learning_rate=0.1,
|
||||
n_estimators=10, n_jobs=1, objective='multi:softprob',
|
||||
random_state=0, reg_alpha=0.001, reg_lambda=0.01,
|
||||
scale_pos_weight=0.5, silent=True)
|
||||
rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='neg_log_loss')
|
||||
rfecv.fit(X, y)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user