* Change doc build to reST exclusively
* Rewrite Intro doc in reST; create toctree
* Update parameter and contribute
* Convert tutorials to reST
* Convert Python tutorials to reST
* Convert CLI and Julia docs to reST
* Enable markdown for R vignettes
* Done migrating to reST
* Add guzzle_sphinx_theme to requirements
* Add breathe to requirements
* Fix search bar
* Add link to user forum
* Fail GPU CI after test failure
* Fix GPU linear tests
* Reduced number of GPU tests to speed up CI
* Remove static allocations of device memory
* Resolve illegal memory access for updater_fast_hist.cc
* Fix broken r tests dependency
* Update python install documentation for GPU
* Upgrading to NCCL2
* Part - II of NCCL2 upgradation
- Doc updates to build with nccl2
- Dockerfile.gpu update for a correct CI build with nccl2
- Updated FindNccl package to have env-var NCCL_ROOT to take precedence
* Upgrading to v9.2 for CI workflow, since it has the nccl2 binaries available
* Added NCCL2 license + copy the nccl binaries into /usr location for the FindNccl module to find
* Set LD_LIBRARY_PATH variable to pick nccl2 binary at runtime
* Need the nccl2 library download instructions inside Dockerfile.release as well
* Use NCCL2 as a static library
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* disable booster setup in spark
* check in parameter conversion
* fix compilation issue
* update exception type
* add qid for https://github.com/dmlc/xgboost/issues/2748
* change names
* change spaces
* change qid to bst_uint type
* change qid type to size_t
* change qid first to SIZE_MAX
* change qid type from size_t to uint64_t
* update dmlc-core
* fix qids name error
* fix group_ptr_ error
* Style fix
* Add qid handling logic to SparsePage
* New MetaInfo format + backward compatibility fix
Old MetaInfo format (1.0) doesn't contain qid field. We still want to be able
to read from MetaInfo files saved in old format. Also, define a new format
(2.0) that contains the qid field. This way, we can distinguish files that
contain qid and those that do not.
* Update MetaInfo test
* Simply group assignment logic
* Explicitly set qid=nullptr in NativeDataIter
NativeDataIter's callback does not support qid field. Users of NativeDataIter
will need to call setGroup() function separately to set group information.
* Save qids_ in SaveBinary()
* Upgrade dmlc-core submodule
* Add a test for reading qid
* Add contributor
* Check the size of qids_
* Document qid format
* allow arbitrary cross validation fold indices
- use training indices passed to `folds` parameter in `training.cv`
- update doc string
* add tests for arbitrary fold indices
* Refactor to allow for custom regularisation methods
* Implement compositional SplitEvaluator framework
* Fixed segfault when no monotone_constraints are supplied.
* Change pid to parentID
* test_monotone_constraints.py now passes
* Refactor ColMaker and DistColMaker to use SplitEvaluator
* Performance optimisation when no monotone_constraints specified
* Fix linter messages
* Fix a few more linter errors
* Update the amalgamation
* Add bounds check
* Add check for leaf node
* Fix linter error in param.h
* Fix clang-tidy errors on CI
* Fix incorrect function name
* Fix clang-tidy error in updater_fast_hist.cc
* Enable SSE2 for Win32 R MinGW
Addresses https://github.com/dmlc/xgboost/pull/3335#issuecomment-400535752
* Add contributor
CI tests were failing because wget prompts "the user" for a response
whenever the google test archive is already on the disk.
Fix: Use `-nc` option to skip download when the archive already
exists
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* maven central release
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* [jvm-packages] XGBoost Spark integration refactor. (#3313)
* XGBoost Spark integration refactor.
* Make corresponding update for xgboost4j-example
* Address comments.
* [jvm-packages] Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib (#3326)
* Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib
* Fix extra space.
* [jvm-packages] XGBoost Spark supports ranking with group data. (#3369)
* XGBoost Spark supports ranking with group data.
* Use Iterator.duplicate to prevent OOM.
* Update CheckpointManagerSuite.scala
* Resolve conflicts
* Use sparse page as singular CSR matrix representation
* Simplify dmatrix methods
* Reduce statefullness of batch iterators
* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
* GPU binning and compression.
- binning and index compression are done inside the DeviceShard constructor
- in case of a DMatrix with multiple row batches, it is first converted into a single row batch
Currently, `CLIPredict()` saves prediction results in default 6-digit precision which causes precision loss. This PR sets precision to a level so that the conversion back to `bst_float` is lossless.
Related: #3298.
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* update 0.80
* Fix print.xgb.Booster
valid_handle should be TRUE when x$handle is NOT null
* Update xgb.Booster.R
Modify is.null.handle to return TRUE for NULL handle