* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
* Prevent empty quantiles
* Revise and improve unit tests for quantile hist
* Remove unnecessary comment
* Add #2943 as a test case
* Skip test if no sklearn
* Revise misleading comments
* Add checks for group size.
* Simple docs.
* Search group index during hist cut matrix initialization.
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Remove GHistRow, GHistEntry, GHistIndexRow.
* Remove kSimpleStats.
* Remove CheckInfo, SetLeafVec in GradStats and in SKStats.
* Clean up the GradStats.
* Cleanup calcgain.
* Move LossChangeMissing out of common.
* Remove [] operator from GHistIndexBlock.
- ./testxgboost (without filters) failed if run on a multi-GPU machine because
the memory was allocated on the current device, but device 0
was always passed into LaunchN
* Use Span in gpu coordinate.
* Use Span in device code.
* Fix shard size calculation.
- Use lower_bound instead of upper_bound.
* Check empty devices.
* Unify logging facilities.
* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
* Port elementwise metrics to GPU.
* All elementwise metrics are converted to static polymorphic.
* Create a reducer for metrics reduction.
* Remove const of Metric::Eval to accommodate CubMemory.
- Improved GPU performance logging
- Only use one execute shards function
- Revert performance regression on multi-GPU
- Use threads to launch NCCL AllReduce
* Make C++ unit tests run and pass on Windows
* Fix logic for external memory. The letter ':' is part of drive letter,
so remove the drive letter before splitting on ':'.
* Cosmetic syntax changes to keep MSVC happy.
* Fix lint
* Add Windows guard
* Fix#3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file
This allows pickled models to retain predictor attributes, such as
'predictor' (whether to use CPU or GPU) and 'n_gpu' (number of GPUs
to use). Related: h2oai/h2o4gpu#625Closes#3342.
TODO. Write a test.
* Fix lint
* Do not load GPU predictor into CPU-only XGBoost
* Add a test for pickling GPU predictors
* Make sample data big enough to pass multi GPU test
* Update test_gpu_predictor.cu
* Clean up logic for converting tree_method to updater sequence
* Use C++11 enum class for extra safety
Compiler will give warnings if switch statements don't handle all
possible values of C++11 enum class.
Also allow enum class to be used as DMLC parameter.
* Fix compiler error + lint
* Address reviewer comment
* Better docstring for DECLARE_FIELD_ENUM_CLASS
* Fix lint
* Add C++ test to see if tree_method is recognized
* Fix clang-tidy error
* Add test_learner.h to R package
* Update comments
* Fix lint error
* Multi-GPU support in GPUPredictor.
- GPUPredictor is multi-GPU
- removed DeviceMatrix, as it has been made obsolete by using HostDeviceVector in DMatrix
* Replaced pointers with spans in GPUPredictor.
* Added a multi-GPU predictor test.
* Fix multi-gpu test.
* Fix n_rows < n_gpus.
* Reinitialize shards when GPUSet is changed.
* Tests range of data.
* Remove commented code.
* Remove commented code.
* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* DMatrix refactor 2
* Remove buffered rowset usage where possible
* Transition to c++11 style iterators for row access
* Transition column iterators to C++ 11
* Add multi-GPU unit test environment
* Better assertion message
* Temporarily disable failing test
* Distinguish between multi-GPU and single-GPU CPP tests
* Consolidate Python tests. Use attributes to distinguish multi-GPU Python tests from single-CPU counterparts
- previously, vec_ in DeviceShard wasn't updated on copy; as a result,
the shards continued to refer to the old HostDeviceVectorImpl object,
which resulted in a dangling pointer once that object was deallocated
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.
- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring
* Added const version of HostDeviceVector API calls.
- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions
* Updated src/linear/updater_gpu_coordinate.cu.
* Added read-only state for HostDeviceVector sync.
- this means no copies are performed if both host and devices access
the HostDeviceVector read-only
* Fixed linter and test errors.
- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
e.g. in calls to cudaSetDevice()
* Fixed explicit template instantiation errors for HostDeviceVector.
- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>
* Fixed HostDeviceVector tests that require multiple GPUs.
- added a mock set device handler; when set, it is called instead of cudaSetDevice()
* Add basic Span class based on ISO++20.
* Use Span<Entry const> instead of Inst in SparsePage.
* Add DeviceSpan in HostDeviceVector, use it in regression obj.
* Added finding quantiles on GPU.
- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
as those found by the old one, test thresholds in
tests/python-gpu/test_gpu_updaters.py have been adjusted.
* Adjustments and improved testing for finding quantiles on the GPU.
- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
* add qid for https://github.com/dmlc/xgboost/issues/2748
* change names
* change spaces
* change qid to bst_uint type
* change qid type to size_t
* change qid first to SIZE_MAX
* change qid type from size_t to uint64_t
* update dmlc-core
* fix qids name error
* fix group_ptr_ error
* Style fix
* Add qid handling logic to SparsePage
* New MetaInfo format + backward compatibility fix
Old MetaInfo format (1.0) doesn't contain qid field. We still want to be able
to read from MetaInfo files saved in old format. Also, define a new format
(2.0) that contains the qid field. This way, we can distinguish files that
contain qid and those that do not.
* Update MetaInfo test
* Simply group assignment logic
* Explicitly set qid=nullptr in NativeDataIter
NativeDataIter's callback does not support qid field. Users of NativeDataIter
will need to call setGroup() function separately to set group information.
* Save qids_ in SaveBinary()
* Upgrade dmlc-core submodule
* Add a test for reading qid
* Add contributor
* Check the size of qids_
* Document qid format