463 Commits

Author SHA1 Message Date
Jiaming Yuan
58a6723eb1
Initial support for multioutput regression. (#7514)
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
2021-12-18 09:28:38 +08:00
Qingyun Wu
b4a1236cfc
[doc] Update the link to the tuning example in FLAML 2021-12-17 14:31:00 +08:00
Jiaming Yuan
c024c42dce
Modernize XGBoost Python document. (#7468)
* Use sphinx gallery to integrate examples.
* Remove mock objects.
* Add dask doc inventory.
2021-11-23 23:24:52 +08:00
Jiaming Yuan
e6ab594e14
Change shebang used in CLI demo. (#7389)
Change from system Python to environment python3.  For Ubuntu 20.04, only `python3` is
available and there's no `python`.  So at least `python3` is consistent with Python
virtual env, Ubuntu and anaconda.
2021-11-02 22:11:19 +08:00
Jiaming Yuan
45aef75cca
Move skl eval_metric and early_stopping rounds to model params. (#6751)
A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`.  And `feval` is deprecated.  The new `custom_metric` receives transformed prediction when the built-in objective is used.  This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function.

`eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model.  The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`.

Added more detailed documents for the behaviour of custom objective and metric.
2021-10-28 17:20:20 +08:00
Jiaming Yuan
2eee87423c
Remove old custom objective demo. (#7369)
We have 2 new custom objective demos covering both regression and classification with
accompanying tutorials in documents.
2021-10-27 16:31:48 +08:00
Jiaming Yuan
15685996fc
[doc] Small improvements for categorical data document. (#7330) 2021-10-20 18:04:32 +08:00
Jiaming Yuan
6cdcfe8128
Improve external memory demo. (#7320)
* Use npy format.
* Add evaluation.
* Use make_regression.
2021-10-17 11:25:24 +08:00
Jiaming Yuan
0bd8f21e4e
Add document for categorical data. (#7307) 2021-10-12 16:10:59 +08:00
Jiaming Yuan
0ed979b096
Support more input types for categorical data. (#7220)
* Support more input types for categorical data.

* Shorten the type name from "categorical" to "c".
* Tests for np/cp array and scipy csr/csc/coo.
* Specify the type for feature info.
2021-09-16 20:39:30 +08:00
Jiaming Yuan
d997c967d5
Demo for experimental categorical data support. (#7213) 2021-09-15 08:20:12 +08:00
Jiaming Yuan
68a2c7b8d6
Fix memory leak in demo. (#7216) 2021-09-09 13:51:03 +08:00
Jiaming Yuan
7bdedacb54
Document for process_type. (#7135)
* Update document for prune and refresh.

* Add demo.
2021-08-03 13:11:52 +08:00
Jiaming Yuan
36346f8f56
C API demo for inference. (#7151) 2021-08-03 00:46:47 +08:00
Jiaming Yuan
778135f657
Fix parameter loading with training continuation. (#7121)
* Add a demo for training continuation.
2021-07-23 10:51:47 +08:00
Jiaming Yuan
e6088366df
Export Python Interface for external memory. (#7070)
* Add Python iterator interface.
* Add tests.
* Add demo.
* Add documents.
* Handle empty dataset.
2021-07-22 15:15:53 +08:00
Jiaming Yuan
345796825f
Optional find dependency in installed cmake config. (#7099)
* Find dependency only when xgboost is built as static library.
* Resolve msvc warning.
* Add test for linking shared library.
2021-07-11 17:20:55 +08:00
Jiaming Yuan
663136aa08
Implement feature score for linear model. (#7048)
* Add feature score support for linear model.
* Port R interface to the new implementation.
* Add linear model support in Python.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-06-25 14:34:02 +08:00
Philip Hyunsu Cho
655e6992f6
[Dask] Add example of using custom callback in Dask (#6995) 2021-06-03 07:05:55 +08:00
Andrew Ziem
3e7e426b36
Fix spelling in documents (#6948)
* Update roxygen2 doc.

Co-authored-by: fis <jm.yuan@outlook.com>
2021-05-11 20:44:36 +08:00
Philip Hyunsu Cho
4224c08cac
Add demo for using AFT survival with Dask (#6853) 2021-04-13 16:18:33 -07:00
Jiaming Yuan
ca998df912
Clarify the behavior of use_rmm. (#6808)
* Clarify the `use_rmm` flag in document and demo.
2021-03-31 15:43:11 +08:00
Jiaming Yuan
5c87c2bba8
Update demo for prediction. (#6789)
* Remove use of deprecated ntree_limit.
* Add sklearn demo.
2021-03-27 03:09:25 +08:00
Qingyun Wu
642336add7
[doc] Add FLAML as a fast tuning tool for XGBoost (#6770)
Co-authored-by: Qingyun Wu <qiw@microsoft.com>
2021-03-20 01:47:39 +08:00
Philip Hyunsu Cho
366f3cb9d8
Add use_rmm flag to global configuration (#6656)
* Ensure RMM is 0.18 or later

* Add use_rmm flag to global configuration

* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True

* Update the demo

* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
2021-03-09 14:53:05 -08:00
MBSMachineLearning
95cbfad990
"featue_map" typo changed to "feature_map" (#6540) 2020-12-21 22:11:11 +08:00
Philip Hyunsu Cho
cd0821500c
Add Saturn Cloud Dask XGBoost tutorial to Awesome XGBoost [skip ci] (#6532) 2020-12-19 15:57:05 -08:00
hzy001
c2ba4fb957
Fix broken links. (#6455)
Co-authored-by: Hao Ziyu <haoziyu@qiyi.com>
Co-authored-by: fis <jm.yuan@outlook.com>
2020-12-02 17:39:12 +08:00
Jiaming Yuan
f4ff1c53fd
Fix CLI ranking demo. (#6439)
Save model at final round.
2020-11-29 03:12:06 +08:00
Jiaming Yuan
c90f968d92
Update Python documents. (#6376) 2020-11-12 17:51:32 +08:00
Jiaming Yuan
dfac5f89e9
Group CLI demo into subdirectory. (#6258)
CLI is not most developed interface. Putting them into correct directory can help new users to avoid it as most of the use cases are from a language binding.
2020-10-28 14:40:44 -07:00
Rory Mitchell
f0c3ff313f
Update GPUTreeShap, add docs (#6281)
* Update GPUTreeShap, add docs

* Fix test

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-10-27 18:22:12 +13:00
Jiaming Yuan
81c37c28d5
Time the CPU tests on Jenkins. (#6257)
* Time the CPU tests on Jenkins.
* Reduce thread contention.
* Add doc.
* Skip heavy tests on ARM.
2020-10-20 17:19:07 -07:00
Manikya Bardhan
549f361b71
Updated winning solutions list (#6254) 2020-10-19 04:06:48 +08:00
Wittty-Panda
0fc263ead5
Update the list of winning solutions (#6222) 2020-10-13 20:05:12 +08:00
Jiaming Yuan
ab5b35134f
Rework Python callback functions. (#6199)
* Define a new callback interface for Python.
* Deprecate the old callbacks.
* Enable early stopping on dask.
2020-10-10 17:52:36 +08:00
DIVYA CHAUHAN
750bd0ae9a
Update the list of winning solutions using XGBoost (#6192)
Co-authored-by: divya <divyachauhan661@gmail.com>
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-10-03 13:39:58 -07:00
Christian Lorentzen
cf4f019ed6
[Breaking] Change default evaluation metric for classification to logloss / mlogloss (#6183)
* Change DefaultEvalMetric of classification from error to logloss

* Change default binary metric in plugin/example/custom_obj.cc

* Set old error metric in python tests

* Set old error metric in R tests

* Fix missed eval metrics and typos in R tests

* Fix setting eval_metric twice in R tests

* Add warning for empty eval_metric for classification

* Fix Dask tests

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-10-02 12:06:47 -07:00
John Quitto-Graham
e0e4f15d0e
Fix a comment in demo to use correct reference (#6190)
Co-authored-by: John Quitto Graham <johnq@dgx07.aselab.nvidia.com>
2020-10-01 13:16:04 -07:00
lacrosse91
6bc41df2fe
[Doc] Add list of winning solutions in data science competitions using XGBoost (#6177) 2020-09-30 14:41:29 -07:00
Alexander Gugel
03b8fdec74
Add DMatrix usage examples to c-api-demo (#5854)
* Add DMatrix usage examples to c-api-demo

* Add XGDMatrixCreateFromCSREx example

* Add XGDMatrixCreateFromCSCEx example
2020-09-26 02:10:12 -07:00
Philip Hyunsu Cho
2c4dedb7a0
[CI] Test C API demo (#6159)
* Fix CMake install config to use dependencies

* [CI] Test C API demo

* Explicitly cast num_feature, to avoid warning in Linux
2020-09-25 14:49:01 -07:00
Jiaming Yuan
78d72ef936
Add DaskDeviceQuantileDMatrix demo. (#6156) 2020-09-24 14:08:28 +08:00
Jiaming Yuan
b5f52f0b1b
Validate weights are positive values. (#6115) 2020-09-15 09:03:55 +08:00
Jiaming Yuan
e5d40b39cd
[Breaking] Don't save leaf child count in JSON. (#6094)
The field is deprecated and not used anywhere in XGBoost.
2020-09-08 11:11:13 +08:00
Daniel Steinberg
68c55a37d9
Add cache name back to external_memory.py files. (#6088) 2020-09-06 16:01:09 +08:00
Jiaming Yuan
4d99c58a5f
Feature weights (#5962) 2020-08-18 19:55:41 +08:00
Philip Hyunsu Cho
511bb22ffd
[Doc] Add dtreeviz as a showcase example of integration with 3rd-party software (#6013) 2020-08-13 20:53:59 -07:00
Philip Hyunsu Cho
9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00
Jiaming Yuan
9c93531709
Update Python custom objective demo. (#5981) 2020-08-05 12:27:19 +08:00