The guard protects the global variable from being changed by XGBoost. But this leads to a
bug that the `n_threads` parameter is no longer used after the first iteration. This is
due to the fact that `omp_set_num_threads` is only called once in `Learner::Configure` at
the beginning of the training process.
The guard is still useful for `gpu_id`, since this is called all the times in our codebase
doesn't matter which iteration we are currently running.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.
This constructs an explicit `_ProxyDMatrix` type in Python.
* Remove unused doc.
* Add strict output.