The guard protects the global variable from being changed by XGBoost. But this leads to a bug that the `n_threads` parameter is no longer used after the first iteration. This is due to the fact that `omp_set_num_threads` is only called once in `Learner::Configure` at the beginning of the training process. The guard is still useful for `gpu_id`, since this is called all the times in our codebase doesn't matter which iteration we are currently running.
186 lines
5.2 KiB
C++
186 lines
5.2 KiB
C++
/*!
|
|
* Copyright (c) 2021 by XGBoost Contributors
|
|
*/
|
|
#ifndef XGBOOST_C_API_C_API_UTILS_H_
|
|
#define XGBOOST_C_API_C_API_UTILS_H_
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <vector>
|
|
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/learner.h"
|
|
#include "xgboost/c_api.h"
|
|
|
|
namespace xgboost {
|
|
/* \brief Determine the output shape of prediction.
|
|
*
|
|
* \param strict_shape Whether should we reshape the output with consideration of groups
|
|
* and forest.
|
|
* \param type Prediction type
|
|
* \param rows Input samples
|
|
* \param cols Input features
|
|
* \param chunksize Total elements of output / rows
|
|
* \param groups Number of output groups from Learner
|
|
* \param rounds end_iteration - beg_iteration
|
|
* \param out_shape Output shape
|
|
* \param out_dim Output dimension
|
|
*/
|
|
inline void CalcPredictShape(bool strict_shape, PredictionType type, size_t rows, size_t cols,
|
|
size_t chunksize, size_t groups, size_t rounds,
|
|
std::vector<bst_ulong> *out_shape,
|
|
xgboost::bst_ulong *out_dim) {
|
|
auto &shape = *out_shape;
|
|
if (type == PredictionType::kMargin && rows != 0) {
|
|
// When kValue is used, softmax can change the chunksize.
|
|
CHECK_EQ(chunksize, groups);
|
|
}
|
|
|
|
switch (type) {
|
|
case PredictionType::kValue:
|
|
case PredictionType::kMargin: {
|
|
if (chunksize == 1 && !strict_shape) {
|
|
*out_dim = 1;
|
|
shape.resize(*out_dim);
|
|
shape.front() = rows;
|
|
} else {
|
|
*out_dim = 2;
|
|
shape.resize(*out_dim);
|
|
shape.front() = rows;
|
|
shape.back() = groups;
|
|
}
|
|
break;
|
|
}
|
|
case PredictionType::kApproxContribution:
|
|
case PredictionType::kContribution: {
|
|
if (groups == 1 && !strict_shape) {
|
|
*out_dim = 2;
|
|
shape.resize(*out_dim);
|
|
shape.front() = rows;
|
|
shape.back() = cols + 1;
|
|
} else {
|
|
*out_dim = 3;
|
|
shape.resize(*out_dim);
|
|
shape[0] = rows;
|
|
shape[1] = groups;
|
|
shape[2] = cols + 1;
|
|
}
|
|
break;
|
|
}
|
|
case PredictionType::kApproxInteraction:
|
|
case PredictionType::kInteraction: {
|
|
if (groups == 1 && !strict_shape) {
|
|
*out_dim = 3;
|
|
shape.resize(*out_dim);
|
|
shape[0] = rows;
|
|
shape[1] = cols + 1;
|
|
shape[2] = cols + 1;
|
|
} else {
|
|
*out_dim = 4;
|
|
shape.resize(*out_dim);
|
|
shape[0] = rows;
|
|
shape[1] = groups;
|
|
shape[2] = cols + 1;
|
|
shape[3] = cols + 1;
|
|
}
|
|
break;
|
|
}
|
|
case PredictionType::kLeaf: {
|
|
if (strict_shape) {
|
|
shape.resize(4);
|
|
shape[0] = rows;
|
|
shape[1] = rounds;
|
|
shape[2] = groups;
|
|
auto forest = chunksize / (shape[1] * shape[2]);
|
|
forest = std::max(static_cast<decltype(forest)>(1), forest);
|
|
shape[3] = forest;
|
|
*out_dim = shape.size();
|
|
} else if (chunksize == 1) {
|
|
*out_dim = 1;
|
|
shape.resize(*out_dim);
|
|
shape.front() = rows;
|
|
} else {
|
|
*out_dim = 2;
|
|
shape.resize(*out_dim);
|
|
shape.front() = rows;
|
|
shape.back() = chunksize;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
LOG(FATAL) << "Unknown prediction type:" << static_cast<int>(type);
|
|
}
|
|
}
|
|
CHECK_EQ(
|
|
std::accumulate(shape.cbegin(), shape.cend(), 1, std::multiplies<>{}),
|
|
chunksize * rows);
|
|
}
|
|
|
|
// Reverse the ntree_limit in old prediction API.
|
|
inline uint32_t GetIterationFromTreeLimit(uint32_t ntree_limit, Learner *learner) {
|
|
// On Python and R, `best_ntree_limit` is set to `best_iteration * num_parallel_tree`.
|
|
// To reverse it we just divide it by `num_parallel_tree`.
|
|
if (ntree_limit != 0) {
|
|
learner->Configure();
|
|
uint32_t num_parallel_tree = 0;
|
|
|
|
Json config{Object()};
|
|
learner->SaveConfig(&config);
|
|
auto const &booster =
|
|
get<String const>(config["learner"]["gradient_booster"]["name"]);
|
|
if (booster == "gblinear") {
|
|
num_parallel_tree = 0;
|
|
} else if (booster == "dart") {
|
|
num_parallel_tree = std::stoi(
|
|
get<String const>(config["learner"]["gradient_booster"]["gbtree"]
|
|
["gbtree_train_param"]["num_parallel_tree"]));
|
|
} else if (booster == "gbtree") {
|
|
num_parallel_tree = std::stoi(get<String const>(
|
|
(config["learner"]["gradient_booster"]["gbtree_train_param"]
|
|
["num_parallel_tree"])));
|
|
} else {
|
|
LOG(FATAL) << "Unknown booster:" << booster;
|
|
}
|
|
ntree_limit /= std::max(num_parallel_tree, 1u);
|
|
}
|
|
return ntree_limit;
|
|
}
|
|
|
|
inline float GetMissing(Json const &config) {
|
|
float missing;
|
|
auto const& j_missing = config["missing"];
|
|
if (IsA<Number const>(j_missing)) {
|
|
missing = get<Number const>(j_missing);
|
|
} else if (IsA<Integer const>(j_missing)) {
|
|
missing = get<Integer const>(j_missing);
|
|
} else {
|
|
missing = nan("");
|
|
LOG(FATAL) << "Invalid missing value: " << j_missing;
|
|
}
|
|
return missing;
|
|
}
|
|
|
|
// Safe guard some global variables from being changed by XGBoost.
|
|
class XGBoostAPIGuard {
|
|
int32_t device_id_ {0};
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
void SetGPUAttribute();
|
|
void RestoreGPUAttribute();
|
|
#else
|
|
void SetGPUAttribute() {}
|
|
void RestoreGPUAttribute() {}
|
|
#endif
|
|
|
|
public:
|
|
XGBoostAPIGuard() {
|
|
SetGPUAttribute();
|
|
}
|
|
~XGBoostAPIGuard() {
|
|
RestoreGPUAttribute();
|
|
}
|
|
};
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_C_API_C_API_UTILS_H_
|