- Add `numBoostedRound` to jvm packages
- Remove rabit checkpoint version.
- Change the starting version of training continuation in JVM [breaking].
- Redefine the checkpoint version policy in jvm package. [breaking]
- Rename the Python check point callback parameter. [breaking]
- Unifies the checkpoint policy between Python and JVM.
* Define `best_iteration` only if early stopping is used.
This is the behavior specified by the document but not honored in the actual code.
- Don't set the attributes if there's no early stopping.
- Clean up the code for callbacks, and replace assertions with proper exceptions.
- Assign the attributes when early stopping `save_best` is used.
- Turn the attributes into Python properties.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Previously, we use `libsvm` as default when format is not specified. However, the dmlc
data parser is not particularly robust against errors, and the most common type of error
is undefined format.
Along with which, we will recommend users to use other data loader instead. We will
continue the maintenance of the parsers as it's currently used for many internal tests
including federated learning.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
* Replace all uses of deprecated function sklearn.datasets.load_boston
* More renaming
* Fix bad name
* Update assertion
* Fix n boosted rounds.
* Avoid over regularization.
* Rebase.
* Avoid over regularization.
* Whac-a-mole
Co-authored-by: fis <jm.yuan@outlook.com>
A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`. And `feval` is deprecated. The new `custom_metric` receives transformed prediction when the built-in objective is used. This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function.
`eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model. The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`.
Added more detailed documents for the behaviour of custom objective and metric.
* Implement early stopping with training continuation.
* Add new C API for obtaining boosted rounds.
* Fix off by 1 in `save_best`.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Do not derive from unittest.TestCase (not needed for pytest)
* assertRaises -> pytest.raises
* Simplify test_empty_dmatrix with test parametrization
* setUpClass -> setup_class, tearDownClass -> teardown_class
* Don't import unittest; import pytest
* Use plain assert
* Use parametrized tests in more places
* Fix test_gpu_with_sklearn.py
* Put back run_empty_dmatrix_reg / run_empty_dmatrix_cls
* Fix test_eta_decay_gpu_hist
* Add parametrized tests for monotone constraints
* Fix test names
* Remove test parametrization
* Revise test_slice to be not flaky
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.
* Implement the save_best option in early stopping.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>