Move callbacks from fit to __init__. (#7375)
This commit is contained in:
parent
32e673d8c4
commit
154b15060e
@ -1680,8 +1680,8 @@ class DaskXGBRegressor(DaskScikitLearnBase, XGBRegressorBase):
|
||||
obj: Optional[Callable] = _objective_decorator(self.objective)
|
||||
else:
|
||||
obj = None
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
results = await self.client.sync(
|
||||
_train_async,
|
||||
@ -1783,8 +1783,8 @@ class DaskXGBClassifier(DaskScikitLearnBase, XGBClassifierBase):
|
||||
obj: Optional[Callable] = _objective_decorator(self.objective)
|
||||
else:
|
||||
obj = None
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
results = await self.client.sync(
|
||||
_train_async,
|
||||
@ -1974,8 +1974,8 @@ class DaskXGBRanker(DaskScikitLearnBase, XGBRankerMixIn):
|
||||
raise ValueError(
|
||||
"Custom evaluation metric is not yet supported for XGBRanker."
|
||||
)
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
results = await self.client.sync(
|
||||
_train_async,
|
||||
|
||||
@ -257,6 +257,16 @@ __model_doc = f'''
|
||||
|
||||
This parameter replaces `early_stopping_rounds` in :py:meth:`fit` method.
|
||||
|
||||
callbacks : Optional[List[TrainingCallback]]
|
||||
List of callback functions that are applied at end of each iteration.
|
||||
It is possible to use predefined callbacks by using :ref:`callback_api`.
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)]
|
||||
|
||||
kwargs : dict, optional
|
||||
Keyword arguments for XGBoost Booster object. Full documentation of
|
||||
parameters can be found here:
|
||||
@ -473,6 +483,7 @@ class XGBModel(XGBModelBase):
|
||||
enable_categorical: bool = False,
|
||||
eval_metric: Optional[Union[str, List[str], Callable]] = None,
|
||||
early_stopping_rounds: Optional[int] = None,
|
||||
callbacks: Optional[List[TrainingCallback]] = None,
|
||||
**kwargs: Any
|
||||
) -> None:
|
||||
if not SKLEARN_INSTALLED:
|
||||
@ -511,6 +522,7 @@ class XGBModel(XGBModelBase):
|
||||
self.enable_categorical = enable_categorical
|
||||
self.eval_metric = eval_metric
|
||||
self.early_stopping_rounds = early_stopping_rounds
|
||||
self.callbacks = callbacks
|
||||
if kwargs:
|
||||
self.kwargs = kwargs
|
||||
|
||||
@ -628,6 +640,7 @@ class XGBModel(XGBModelBase):
|
||||
"use_label_encoder",
|
||||
"enable_categorical",
|
||||
"early_stopping_rounds",
|
||||
"callbacks",
|
||||
}
|
||||
filtered = {}
|
||||
for k, v in params.items():
|
||||
@ -719,11 +732,13 @@ class XGBModel(XGBModelBase):
|
||||
eval_metric: Optional[Union[Callable, str, Sequence[str]]],
|
||||
params: Dict[str, Any],
|
||||
early_stopping_rounds: Optional[int],
|
||||
callbacks: Optional[Sequence[TrainingCallback]],
|
||||
) -> Tuple[
|
||||
Optional[Union[Booster, str, "XGBModel"]],
|
||||
Optional[Metric],
|
||||
Dict[str, Any],
|
||||
Optional[int],
|
||||
Optional[Sequence[TrainingCallback]],
|
||||
]:
|
||||
"""Configure parameters for :py:meth:`fit`."""
|
||||
if isinstance(booster, XGBModel):
|
||||
@ -779,13 +794,21 @@ class XGBModel(XGBModelBase):
|
||||
else early_stopping_rounds
|
||||
)
|
||||
|
||||
# Configure callbacks
|
||||
if callbacks is not None:
|
||||
_deprecated("callbacks")
|
||||
if callbacks is not None and self.callbacks is not None:
|
||||
_duplicated("callbacks")
|
||||
callbacks = self.callbacks if self.callbacks is not None else callbacks
|
||||
|
||||
# lastly check categorical data support.
|
||||
if self.enable_categorical and params.get("tree_method", None) != "gpu_hist":
|
||||
raise ValueError(
|
||||
"Experimental support for categorical data is not implemented for"
|
||||
" current tree method yet."
|
||||
)
|
||||
|
||||
return model, metric, params, early_stopping_rounds
|
||||
return model, metric, params, early_stopping_rounds, callbacks
|
||||
|
||||
def _set_evaluation_result(self, evals_result: TrainingCallback.EvalsLog) -> None:
|
||||
if evals_result:
|
||||
@ -856,16 +879,10 @@ class XGBModel(XGBModelBase):
|
||||
selected when colsample is being used. All values must be greater than 0,
|
||||
otherwise a `ValueError` is thrown. Only available for `hist`, `gpu_hist` and
|
||||
`exact` tree methods.
|
||||
|
||||
callbacks :
|
||||
List of callback functions that are applied at end of each iteration.
|
||||
It is possible to use predefined callbacks by using :ref:`callback_api`.
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)]
|
||||
|
||||
.. deprecated: 1.5.1
|
||||
Use `callbacks` in :py:meth:`__init__` or :py:methd:`set_params` instead.
|
||||
"""
|
||||
evals_result: TrainingCallback.EvalsLog = {}
|
||||
train_dmatrix, evals = _wrap_evaluation_matrices(
|
||||
@ -895,8 +912,8 @@ class XGBModel(XGBModelBase):
|
||||
else:
|
||||
obj = None
|
||||
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
self._Booster = train(
|
||||
params,
|
||||
@ -1290,8 +1307,8 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
params["objective"] = "multi:softprob"
|
||||
params["num_class"] = self.n_classes_
|
||||
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
train_dmatrix, evals = _wrap_evaluation_matrices(
|
||||
missing=self.missing,
|
||||
@ -1453,7 +1470,7 @@ class XGBRFClassifier(XGBClassifier):
|
||||
colsample_bynode=colsample_bynode,
|
||||
reg_lambda=reg_lambda,
|
||||
**kwargs)
|
||||
_check_rf_callback(self.early_stopping_rounds, None)
|
||||
_check_rf_callback(self.early_stopping_rounds, self.callbacks)
|
||||
|
||||
def get_xgb_params(self) -> Dict[str, Any]:
|
||||
params = super().get_xgb_params()
|
||||
@ -1525,7 +1542,7 @@ class XGBRFRegressor(XGBRegressor):
|
||||
reg_lambda=reg_lambda,
|
||||
**kwargs
|
||||
)
|
||||
_check_rf_callback(self.early_stopping_rounds, None)
|
||||
_check_rf_callback(self.early_stopping_rounds, self.callbacks)
|
||||
|
||||
def get_xgb_params(self) -> Dict[str, Any]:
|
||||
params = super().get_xgb_params()
|
||||
@ -1708,16 +1725,10 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
|
||||
selected when colsample is being used. All values must be greater than 0,
|
||||
otherwise a `ValueError` is thrown. Only available for `hist`, `gpu_hist` and
|
||||
`exact` tree methods.
|
||||
|
||||
callbacks :
|
||||
List of callback functions that are applied at end of each
|
||||
iteration. It is possible to use predefined callbacks by using
|
||||
:ref:`callback_api`. Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)]
|
||||
|
||||
.. deprecated: 1.5.1
|
||||
Use `callbacks` in :py:meth:`__init__` or :py:methd:`set_params` instead.
|
||||
"""
|
||||
# check if group information is provided
|
||||
if group is None and qid is None:
|
||||
@ -1748,8 +1759,8 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
|
||||
evals_result: TrainingCallback.EvalsLog = {}
|
||||
params = self.get_xgb_params()
|
||||
|
||||
model, metric, params, early_stopping_rounds = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds
|
||||
model, metric, params, early_stopping_rounds, callbacks = self._configure_fit(
|
||||
xgb_model, eval_metric, params, early_stopping_rounds, callbacks
|
||||
)
|
||||
if callable(metric):
|
||||
raise ValueError(
|
||||
@ -1757,8 +1768,9 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
|
||||
)
|
||||
|
||||
self._Booster = train(
|
||||
params, train_dmatrix,
|
||||
self.n_estimators,
|
||||
params,
|
||||
train_dmatrix,
|
||||
self.get_num_boosting_rounds(),
|
||||
early_stopping_rounds=early_stopping_rounds,
|
||||
evals=evals,
|
||||
evals_result=evals_result,
|
||||
|
||||
@ -185,10 +185,12 @@ class TestCallbacks:
|
||||
def test_early_stopping_custom_eval_skl(self):
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
cls = xgb.XGBClassifier(eval_metric=tm.eval_error_metric_skl)
|
||||
early_stopping_rounds = 5
|
||||
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds)
|
||||
cls.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
|
||||
cls = xgb.XGBClassifier(
|
||||
eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
|
||||
)
|
||||
cls.fit(X, y, eval_set=[(X, y)])
|
||||
booster = cls.get_booster()
|
||||
dump = booster.get_dump(dump_format='json')
|
||||
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
||||
@ -197,13 +199,15 @@ class TestCallbacks:
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
n_estimators = 100
|
||||
cls = xgb.XGBClassifier(
|
||||
n_estimators=n_estimators, eval_metric=tm.eval_error_metric_skl
|
||||
)
|
||||
early_stopping_rounds = 5
|
||||
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)
|
||||
cls.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
|
||||
cls = xgb.XGBClassifier(
|
||||
n_estimators=n_estimators,
|
||||
eval_metric=tm.eval_error_metric_skl,
|
||||
callbacks=[early_stop]
|
||||
)
|
||||
cls.fit(X, y, eval_set=[(X, y)])
|
||||
booster = cls.get_booster()
|
||||
dump = booster.get_dump(dump_format='json')
|
||||
assert len(dump) == booster.best_iteration + 1
|
||||
@ -228,9 +232,12 @@ class TestCallbacks:
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
cls = xgb.XGBClassifier(eval_metric=tm.eval_error_metric_skl)
|
||||
early_stopping_rounds = 5
|
||||
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)
|
||||
cls.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
|
||||
early_stop = xgb.callback.EarlyStopping(
|
||||
rounds=early_stopping_rounds, save_best=True
|
||||
)
|
||||
with pytest.warns(UserWarning):
|
||||
cls.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
|
||||
|
||||
booster = cls.get_booster()
|
||||
assert booster.num_boosted_rounds() == booster.best_iteration + 1
|
||||
|
||||
@ -247,6 +254,19 @@ class TestCallbacks:
|
||||
assert booster.num_boosted_rounds() == \
|
||||
booster.best_iteration + early_stopping_rounds + 1
|
||||
|
||||
def test_deprecated(self):
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
early_stopping_rounds = 5
|
||||
early_stop = xgb.callback.EarlyStopping(
|
||||
rounds=early_stopping_rounds, save_best=True
|
||||
)
|
||||
clf = xgb.XGBClassifier(
|
||||
eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
|
||||
)
|
||||
with pytest.raises(ValueError, match=r".*set_params.*"):
|
||||
clf.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
|
||||
|
||||
def run_eta_decay(self, tree_method):
|
||||
"""Test learning rate scheduler, used by both CPU and GPU tests."""
|
||||
scheduler = xgb.callback.LearningRateScheduler
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user