* Now it's built as part of libxgboost.
* Set correct C API error in RABIT initialization and finalization.
* Remove redundant message.
* Guard the tracker print C API.
* cancel job instead of killing SparkContext
This PR changes the default behavior that kills SparkContext. Instead, This PR
cancels jobs when coming across task failed. That means the SparkContext is
still alive even some exceptions happen.
* add a parameter to control if killing SparkContext
* cancel the jobs the failed task belongs to
* remove the jobId from the map when one job failed.
* resolve comments
The functions featureValueOfSparseVector or featureValueOfDenseVector could return a Float.NaN if the input vectore was containing any missing values. This would make fail the partition key computation and most of the vectors would end up in the same partition. We fix this by avoid returning a NaN and simply use the row HashCode in this case.
We added a test to ensure that the repartition is indeed now uniform on input dataset containing values by checking that the partitions size variance is below a certain threshold.
Signed-off-by: Anthony D'Amato <anthony.damato@hotmail.fr>
* Allow non-zero for missing value when training.
* Fix wrong method names.
* Add a unit test
* Move the getter/setter unit test to MissingValueHandlingSuite
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* fix type error
* Validate number of features.
* resolve comments
* add feature size for LabelPoint and DataBatch
* pass the feature size to native
* move feature size validating tests into a separate suite
* resolve comments
Co-authored-by: fis <jm.yuan@outlook.com>
* fix the nan and non-zero missing value handling
* fix nan handling part
* add missing value
* Update MissingValueHandlingSuite.scala
* Update MissingValueHandlingSuite.scala
* stylistic fix
* [jvm-packages][hot-fix] fix column mismatch caused by zip actions at XGBooostModel.transformInternal
* apply minibatch in prediction
* an iterator-compatible minibatch prediction
* regressor impl
* continuous working on mini-batch prediction of xgboost4j-spark
* Update Booster.java
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* wrap iterators
* enable copartition training and validationset
* add parameters
* converge code path and have init unit test
* enable multi evals for ranking
* unit test and doc
* update example
* fix early stopping
* address the offline comments
* udpate doc
* test eval metrics
* fix compilation issue
* fix example
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* wrap iterators
* remove unused code
* refactor
* fix typo
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* remove copy paste error
* added test, commented out right now
* reinstated test
* added fix for checking encryption settings
* fix by using RDD conf
* fix compilation
* renamed conf
* use SparkSession if available
* fix message
* nop
* code review fixes
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* partial finish
* no test
* add test cases
* add test cases
* address comments
* add test for regressor
* fix typo
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* consider spark.task.cpus when controlling parallelism
* fix bug
* fix conf setup
* calculate requestedCores within ParallelismController
* enforce spark.task.cpus = 1
* unify unit test case framework
* enable spark ui
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* [jvm-packages] XGBoost Spark integration refactor. (#3313)
* XGBoost Spark integration refactor.
* Make corresponding update for xgboost4j-example
* Address comments.
* [jvm-packages] Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib (#3326)
* Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib
* Fix extra space.
* [jvm-packages] XGBoost Spark supports ranking with group data. (#3369)
* XGBoost Spark supports ranking with group data.
* Use Iterator.duplicate to prevent OOM.
* Update CheckpointManagerSuite.scala
* Resolve conflicts