[BLOCKING] fix the issue with infrequent feature (#4045)
* fix the issue with infrequent feature * handle exception * use only 2 workers * address the comments
This commit is contained in:
parent
e290ec9a80
commit
773ddbcfcb
@ -9,6 +9,7 @@
|
||||
|
||||
#include <dmlc/base.h>
|
||||
#include <dmlc/data.h>
|
||||
#include <rabit/rabit.h>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
@ -169,8 +170,16 @@ class SparsePage {
|
||||
inline Inst operator[](size_t i) const {
|
||||
const auto& data_vec = data.HostVector();
|
||||
const auto& offset_vec = offset.HostVector();
|
||||
size_t size;
|
||||
// in distributed mode, some partitions may not get any instance for a feature. Therefore
|
||||
// we should set the size as zero
|
||||
if (rabit::IsDistributed() && i + 1 >= offset_vec.size()) {
|
||||
size = 0;
|
||||
} else {
|
||||
size = offset_vec[i + 1] - offset_vec[i];
|
||||
}
|
||||
return {data_vec.data() + offset_vec[i],
|
||||
static_cast<Inst::index_type>(offset_vec[i + 1] - offset_vec[i])};
|
||||
static_cast<Inst::index_type>(size)};
|
||||
}
|
||||
|
||||
/*! \brief constructor */
|
||||
@ -285,7 +294,6 @@ class SparsePage {
|
||||
auto& data_vec = data.HostVector();
|
||||
auto& offset_vec = offset.HostVector();
|
||||
offset_vec.push_back(offset_vec.back() + inst.size());
|
||||
|
||||
size_t begin = data_vec.size();
|
||||
data_vec.resize(begin + inst.size());
|
||||
if (inst.size() != 0) {
|
||||
|
||||
@ -98,3 +98,12 @@ object Ranking extends TrainTestData {
|
||||
getResourceLines(resource).map(_.toInt).toList
|
||||
}
|
||||
}
|
||||
|
||||
object Synthetic extends {
|
||||
val train: Seq[XGBLabeledPoint] = Seq(
|
||||
XGBLabeledPoint(1.0f, Array(0, 1), Array(1.0f, 2.0f)),
|
||||
XGBLabeledPoint(0.0f, Array(0, 1, 2), Array(1.0f, 2.0f, 3.0f)),
|
||||
XGBLabeledPoint(0.0f, Array(0, 1, 2), Array(1.0f, 2.0f, 3.0f)),
|
||||
XGBLabeledPoint(1.0f, Array(0, 1), Array(1.0f, 2.0f))
|
||||
)
|
||||
}
|
||||
|
||||
@ -17,11 +17,14 @@
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
|
||||
|
||||
import org.apache.spark.ml.linalg._
|
||||
import org.apache.spark.ml.param.ParamMap
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
import org.apache.spark.Partitioner
|
||||
|
||||
class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
|
||||
test("XGBoost-Spark XGBoostClassifier ouput should match XGBoost4j") {
|
||||
@ -263,4 +266,46 @@ class XGBoostClassifierSuite extends FunSuite with PerTest {
|
||||
assert(resultDF.columns.contains("predictLeaf"))
|
||||
assert(resultDF.columns.contains("predictContrib"))
|
||||
}
|
||||
|
||||
test("infrequent features") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> 5, "num_workers" -> 2)
|
||||
import DataUtils._
|
||||
val sparkSession = SparkSession.builder().getOrCreate()
|
||||
import sparkSession.implicits._
|
||||
val repartitioned = sc.parallelize(Synthetic.train, 3).map(lp => (lp.label, lp)).partitionBy(
|
||||
new Partitioner {
|
||||
override def numPartitions: Int = 2
|
||||
|
||||
override def getPartition(key: Any): Int = key.asInstanceOf[Float].toInt
|
||||
}
|
||||
).map(_._2).zipWithIndex().map {
|
||||
case (lp, id) =>
|
||||
(id, lp.label, lp.features)
|
||||
}.toDF("id", "label", "features")
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
xgb.fit(repartitioned)
|
||||
}
|
||||
|
||||
test("infrequent features (use_external_memory)") {
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> 5, "num_workers" -> 2, "use_external_memory" -> true)
|
||||
import DataUtils._
|
||||
val sparkSession = SparkSession.builder().getOrCreate()
|
||||
import sparkSession.implicits._
|
||||
val repartitioned = sc.parallelize(Synthetic.train, 3).map(lp => (lp.label, lp)).partitionBy(
|
||||
new Partitioner {
|
||||
override def numPartitions: Int = 2
|
||||
|
||||
override def getPartition(key: Any): Int = key.asInstanceOf[Float].toInt
|
||||
}
|
||||
).map(_._2).zipWithIndex().map {
|
||||
case (lp, id) =>
|
||||
(id, lp.label, lp.features)
|
||||
}.toDF("id", "label", "features")
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
xgb.fit(repartitioned)
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user