- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
- Optionally switch to c++17
- Use rmm CMake target.
- Workaround compiler errors.
- Fix GPUMetric inheritance.
- Run death tests even if it's built with RMM support.
Co-authored-by: jakirkham <jakirkham@gmail.com>
* Pass sparse page as adapter, which prepares for quantile dmatrix.
* Remove old external memory code like `rbegin` and extra `Init` function.
* Simplify type dispatch.
Federated learning plugin for xgboost:
* A gRPC server to aggregate MPI-style requests (allgather, allreduce, broadcast) from federated workers.
* A Rabit engine for the federated environment.
* Integration test to simulate federated learning.
Additional followups are needed to address GPU support, better security, and privacy, etc.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Skip non-increasing test with external memory when subsample is used.
* Increase bin numbers for boost from prediction test. This mitigates the effect of
non-deterministic partitioning.
* Use the name `Context`.
* Pass a context object into `SetInfo`.
* Add context to proxy matrix.
* Add context to iterative DMatrix.
This is to remove the use of the default number of threads during `SetInfo` as a follow-up on
removing the global omp variable while preparing for CUDA stream semantic. Currently, XGBoost
uses the legacy CUDA stream, we will gradually remove them in the future in favor of non-blocking streams.
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.