* [CI] Drop CUDA 10.1; Require 11.0
* Change NCCL version
* Use CUDA 10.1 for clang-tidy, for now
* Remove JDK 11 and 12
* Fix NCCL version
* Don't require 11.0 just yet, until clang-tidy is fixed
* Skip MultiClassesSerializationTest.GpuHist
Following classes are added to support dataframe in java binding:
- `Column` is an abstract type for a single column in tabular data.
- `ColumnBatch` is an abstract type for dataframe.
- `CuDFColumn` is an implementaiton of `Column` that consume cuDF column
- `CudfColumnBatch` is an implementation of `ColumnBatch` that consumes cuDF dataframe.
- `DeviceQuantileDMatrix` is the interface for quantized data.
The Java implementation mimics the Python interface and uses `__cuda_array_interface__` protocol for memory indexing. One difference is on JVM package, the data batch is staged on the host as java iterators cannot be reset.
Co-authored-by: jiamingy <jm.yuan@outlook.com>
* [CI] Automatically build GPU-enabled R package for Windows
* Update Jenkinsfile-win64
* Build R package for the release branch only
* Update install doc
* Support categorical data for dask functional interface and DQM.
* Implement categorical data support for GPU GK-merge.
* Add support for dask functional interface.
* Add support for DQM.
* Get newer cupy.
* Change C API name.
* Test for all primitive types from array.
* Add native support for CPU 128 float.
* Convert boolean and float16 in Python.
* Fix dask version for now.
* Ensure RMM is 0.18 or later
* Add use_rmm flag to global configuration
* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True
* Update the demo
* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* [CI] Upgrade cuDF and RMM to 0.18 nightlies
* Modify RMM plugin to be compatible with RMM 0.18
* Update src/common/device_helpers.cuh
Co-authored-by: Mark Harris <mharris@nvidia.com>
Co-authored-by: Mark Harris <mharris@nvidia.com>
* Vendor libgomp in the manylinux2014_aarch64 wheel
* Use vault repo, since CentOS 6 has reached End-of-Life on Nov 30
* Vendor libgomp in the manylinux2010_x86_64 wheel
* Run verification step inside the container
* Remove R check from Jenkins
* Print stacktrace when CRAN test fail in GitHub Actions
* Add verbose flag in tests/ci_build/print_r_stacktrace.sh
* Fix path in tests/ci_build/print_r_stacktrace.sh
* [CI] Clean up build for JVM packages
* Use correct path for saving native lib
* Fix groupId of maven-surefire-plugin
* Fix stashing of xgboost4j_jar_gpu
* [CI] Don't run xgboost4j-tester with GPU, since it doesn't use gpu_hist
* Modin DF support
* mode change
* tests were added, ci env was extended
* mode change
* Remove redundant installation of modin
* Add a pytest skip marker for modin
* Install Modin[ray] from PyPI
* fix interfering
* avoid extra conversion
* delete cv test for modin
* revert cv function
Co-authored-by: ShvetsKS <kirill.shvets@intel.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Fix a unit test on CLI, to handle RC versions
* [CI] Use mgpu machine to run gpu hist unit tests
* [CI] Build GPU-enabled JAR artifact and deploy to xgboost-maven-repo
* [CI] Move lint to GitHub Actions
* [CI] Move Doxygen to GitHub Actions
* [CI] Move Sphinx build test to GitHub Actions
* [CI] Reduce workload for Windows R tests
* [CI] Move clang-tidy to Build stage
* fixed some endian issues
* Use dmlc::ByteSwap() to simplify code
* Fix lint check
* [CI] Add test for s390x
* Download latest CMake on s390x
* Fix a bug in my code
* Save magic number in dmatrix with byteswap on big-endian machine
* Save version in binary with byteswap on big-endian machine
* Load scalar with byteswap in MetaInfo
* Add a debugging message
* Handle arrays correctly when byteswapping
* EOF can also be 255
* Handle magic number in MetaInfo carefully
* Skip Tree.Load test for big-endian, since the test manually builds little-endian binary model
* Handle missing packages in Python tests
* Don't use boto3 in model compatibility tests
* Add s390 Docker file for local testing
* Add model compatibility tests
* Add R compatibility test
* Revert "Add R compatibility test"
This reverts commit c2d2bdcb7dbae133cbb927fcd20f7e83ee2b18a8.
Co-authored-by: Qi Zhang <q.zhang@ibm.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* [CI] Add RMM as an optional dependency
* Replace caching allocator with pool allocator from RMM
* Revert "Replace caching allocator with pool allocator from RMM"
This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.
* Use rmm::mr::get_default_resource()
* Try setting default resource (doesn't work yet)
* Allocate pool_mr in the heap
* Prevent leaking pool_mr handle
* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest
* Turn off death tests for RMM
* Address reviewer's feedback
* Prevent leaking of cuda_mr
* Fix Jenkinsfile syntax
* Remove unnecessary function in Jenkinsfile
* [CI] Install NCCL into RMM container
* Run Python tests
* Try building with RMM, CUDA 10.0
* Do not use RMM for CUDA 10.0 target
* Actually test for test_rmm flag
* Fix TestPythonGPU
* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU
* Use 10.0 container to build RMM-enabled XGBoost
* Revert "Use 10.0 container to build RMM-enabled XGBoost"
This reverts commit 789021fa31112e25b683aef39fff375403060141.
* Fix Jenkinsfile
* [CI] Assign larger /dev/shm to NCCL
* Use 10.2 artifact to run multi-GPU Python tests
* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target
* Rename Conda env rmm_test -> gpu_test
* Use env var to opt into CNMeM pool for C++ tests
* Use identical CUDA version for RMM builds and tests
* Use Pytest fixtures to enable RMM pool in Python tests
* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM
* Use per-device MR; use command arg in gtest
* Set CMake prefix path to use Conda env
* Use 0.15 nightly version of RMM
* Remove unnecessary header
* Fix a unit test when cudf is missing
* Add RMM demos
* Remove print()
* Use HostDeviceVector in GPU predictor
* Simplify pytest setup; use LocalCUDACluster fixture
* Address reviewers' commments
Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
* [CI] Move lint to a separate script
* [CI] Improved lintr launcher
* Add lintr as a separate action
* Add custom parsing logic to print out logs
* Fix lintr issues in demos
* Run R demos
* Fix CRAN checks
* Install XGBoost into R env before running lintr
* Install devtools (needed to run demos)
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>