Modin DF support (#6055)

* Modin DF support

* mode change

* tests were added, ci env was extended

* mode change

* Remove redundant installation of modin

* Add a pytest skip marker for modin

* Install Modin[ray] from PyPI

* fix interfering

* avoid extra conversion

* delete cv test for modin

* revert cv function

Co-authored-by: ShvetsKS <kirill.shvets@intel.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
This commit is contained in:
ShvetsKS 2020-08-29 22:33:30 +03:00 committed by GitHub
parent 3a990433f9
commit c1ca872d1e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 187 additions and 2 deletions

View File

@ -151,6 +151,13 @@ def _is_pandas_df(data):
return False
return isinstance(data, pd.DataFrame)
def _is_modin_df(data):
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.DataFrame)
_pandas_dtype_mapper = {
'int8': 'int',
@ -208,8 +215,8 @@ def _transform_pandas_df(data, feature_names=None, feature_types=None,
'DataFrame for {meta} cannot have multiple columns'.format(
meta=meta))
dtype = meta_type if meta_type else 'float'
data = data.values.astype(dtype)
dtype = meta_type if meta_type else np.float32
data = np.ascontiguousarray(data.values, dtype=dtype)
return data, feature_names, feature_types
@ -228,6 +235,13 @@ def _is_pandas_series(data):
return False
return isinstance(data, pd.Series)
def _is_modin_series(data):
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.Series)
def _from_pandas_series(data, missing, nthread, feature_types, feature_names):
return _from_numpy_array(data.values.astype('float'), missing, nthread,
@ -525,6 +539,12 @@ def dispatch_data_backend(data, missing, threads,
_warn_unused_missing(data, missing)
return _from_dt_df(data, missing, threads, feature_names,
feature_types)
if _is_modin_df(data):
return _from_pandas_df(data, missing, threads,
feature_names, feature_types)
if _is_modin_series(data):
return _from_pandas_series(data, missing, threads, feature_names,
feature_types)
if _has_array_protocol(data):
pass
raise TypeError('Not supported type for data.' + str(type(data)))
@ -648,6 +668,15 @@ def dispatch_meta_backend(matrix: DMatrix, data, name: str, dtype: str = None):
if _is_dt_df(data):
_meta_from_dt(data, name, dtype, handle)
return
if _is_modin_df(data):
data, _, _ = _transform_pandas_df(data, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_modin_series(data):
data = data.values.astype('float')
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
return
if _has_array_protocol(data):
pass
raise TypeError('Unsupported type for ' + name, str(type(data)))

View File

@ -31,3 +31,4 @@ dependencies:
- pip:
- guzzle_sphinx_theme
- datatable
- modin[all]

View File

@ -16,3 +16,4 @@ dependencies:
- pip
- pip:
- cupy-cuda101
- modin[all]

View File

@ -0,0 +1,145 @@
# -*- coding: utf-8 -*-
import numpy as np
import xgboost as xgb
import testing as tm
import unittest
import pytest
try:
import modin.pandas as md
except ImportError:
pass
pytestmark = pytest.mark.skipif(**tm.no_modin())
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
class TestModin(unittest.TestCase):
def test_modin(self):
df = md.DataFrame([[1, 2., True], [2, 3., False]],
columns=['a', 'b', 'c'])
dm = xgb.DMatrix(df, label=md.Series([1, 2]))
assert dm.feature_names == ['a', 'b', 'c']
assert dm.feature_types == ['int', 'float', 'i']
assert dm.num_row() == 2
assert dm.num_col() == 3
np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))
# overwrite feature_names and feature_types
dm = xgb.DMatrix(df, label=md.Series([1, 2]),
feature_names=['x', 'y', 'z'],
feature_types=['q', 'q', 'q'])
assert dm.feature_names == ['x', 'y', 'z']
assert dm.feature_types == ['q', 'q', 'q']
assert dm.num_row() == 2
assert dm.num_col() == 3
# incorrect dtypes
df = md.DataFrame([[1, 2., 'x'], [2, 3., 'y']],
columns=['a', 'b', 'c'])
self.assertRaises(ValueError, xgb.DMatrix, df)
# numeric columns
df = md.DataFrame([[1, 2., True], [2, 3., False]])
dm = xgb.DMatrix(df, label=md.Series([1, 2]))
assert dm.feature_names == ['0', '1', '2']
assert dm.feature_types == ['int', 'float', 'i']
assert dm.num_row() == 2
assert dm.num_col() == 3
np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))
df = md.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6])
dm = xgb.DMatrix(df, label=md.Series([1, 2]))
assert dm.feature_names == ['4', '5', '6']
assert dm.feature_types == ['int', 'float', 'int']
assert dm.num_row() == 2
assert dm.num_col() == 3
df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
dummies = md.get_dummies(df)
# B A_X A_Y A_Z
# 0 1 1 0 0
# 1 2 0 1 0
# 2 3 0 0 1
result, _, _ = xgb.data._transform_pandas_df(dummies)
exp = np.array([[1., 1., 0., 0.],
[2., 0., 1., 0.],
[3., 0., 0., 1.]])
np.testing.assert_array_equal(result, exp)
dm = xgb.DMatrix(dummies)
assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z']
assert dm.feature_types == ['int', 'int', 'int', 'int']
assert dm.num_row() == 3
assert dm.num_col() == 4
df = md.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]})
dm = xgb.DMatrix(df)
assert dm.feature_names == ['A=1', 'A=2']
assert dm.feature_types == ['int', 'int']
assert dm.num_row() == 3
assert dm.num_col() == 2
df_int = md.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10])
dm_int = xgb.DMatrix(df_int)
df_range = md.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1))
dm_range = xgb.DMatrix(df_range)
assert dm_int.feature_names == ['9', '10'] # assert not "9 "
assert dm_int.feature_names == dm_range.feature_names
# test MultiIndex as columns
df = md.DataFrame(
[
(1, 2, 3, 4, 5, 6),
(6, 5, 4, 3, 2, 1)
],
columns=md.MultiIndex.from_tuples((
('a', 1), ('a', 2), ('a', 3),
('b', 1), ('b', 2), ('b', 3),
))
)
dm = xgb.DMatrix(df)
assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3']
assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int']
assert dm.num_row() == 2
assert dm.num_col() == 6
def test_modin_label(self):
# label must be a single column
df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
self.assertRaises(ValueError, xgb.data._transform_pandas_df, df,
None, None, 'label', 'float')
# label must be supported dtype
df = md.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)})
self.assertRaises(ValueError, xgb.data._transform_pandas_df, df,
None, None, 'label', 'float')
df = md.DataFrame({'A': np.array([1, 2, 3], dtype=int)})
result, _, _ = xgb.data._transform_pandas_df(df, None, None,
'label', 'float')
np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]],
dtype=float))
dm = xgb.DMatrix(np.random.randn(3, 2), label=df)
assert dm.num_row() == 3
assert dm.num_col() == 2
def test_modin_weight(self):
kRows = 32
kCols = 8
X = np.random.randn(kRows, kCols)
y = np.random.randn(kRows)
w = np.random.randn(kRows).astype(np.float32)
w_pd = md.DataFrame(w)
data = xgb.DMatrix(X, y, w_pd)
assert data.num_row() == kRows
assert data.num_col() == kCols
np.testing.assert_array_equal(data.get_weight(), w)

View File

@ -37,6 +37,15 @@ def no_pandas():
'reason': 'Pandas is not installed.'}
def no_modin():
reason = 'Modin is not installed.'
try:
import modin.pandas as _ # noqa
return {'condition': False, 'reason': reason}
except ImportError:
return {'condition': True, 'reason': reason}
def no_dt():
import importlib.util
spec = importlib.util.find_spec('datatable')