130 Commits

Author SHA1 Message Date
Jiaming Yuan
d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00
Jiaming Yuan
7d93932423
Better message when no GPU is found. (#5594) 2020-04-26 10:00:57 +08:00
Jiaming Yuan
9c1103e06c
[Breaking] Set output margin to True for custom objective. (#5564)
* Set output margin to True for custom objective in Python and R.

* Add a demo for writing multi-class custom objective function.

* Run tests on selected demos.
2020-04-20 20:44:12 +08:00
Rory Mitchell
093e2227e3
Serialise booster after training to reset state (#5484)
* Serialise booster after training to reset state

* Prevent process_type being set on load

* Check for correct updater sequence
2020-04-11 16:27:12 +12:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Jiaming Yuan
0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00
Rory Mitchell
13b10a6370
Device dmatrix (#5420) 2020-03-28 14:42:21 +13:00
Jiaming Yuan
fc88105620
Better error message for updating. (#5418) 2020-03-15 16:46:21 +08:00
Jiaming Yuan
ab7a46a1a4
Check whether current updater can modify a tree. (#5406)
* Check whether current updater can modify a tree.

* Fix tree model JSON IO for pruned trees.
2020-03-14 09:24:08 +08:00
Jiaming Yuan
0110754a76
Remove update prediction cache from predictors. (#5312)
Move this function into gbtree, and uses only updater for doing so. As now the predictor knows exactly how many trees to predict, there's no need for it to update the prediction cache.
2020-02-17 11:35:47 +08:00
Jiaming Yuan
c35cdecddd
Move prediction cache to Learner. (#5220)
* Move prediction cache into Learner.

* Clean-ups

- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
  prediction into training process but doesn't provide any actual overall speed
  gain.
- The cache is now unique to Learner, which means the ownership is no longer
  shared by any other components.

* Changes

- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
2020-02-14 13:04:23 +08:00
Jiaming Yuan
5199b86126
Fix R dart prediction. (#5204)
* Fix R dart prediction and add test.
2020-01-16 12:11:04 +08:00
Kodi Arfer
f100b8d878 [Breaking] Don't drop trees during DART prediction by default (#5115)
* Simplify DropTrees calling logic

* Add `training` parameter for prediction method.

* [Breaking]: Add `training` to C API.

* Change for R and Python custom objective.

* Correct comment.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2020-01-13 21:48:30 +08:00
Jiaming Yuan
7b65698187
Enforce correct data shape. (#5191)
* Fix syncing DMatrix columns.
* notes for tree method.
* Enable feature validation for all interfaces except for jvm.
* Better tests for boosting from predictions.
* Disable validation on JVM.
2020-01-13 15:48:17 +08:00
Jiaming Yuan
f3d7877802
Parameter validation (#5157)
* Unused code.

* Split up old colmaker parameters from train param.

* Fix dart.

* Better name.
2019-12-26 11:59:05 +08:00
Jiaming Yuan
3136185bc5
JSON configuration IO. (#5111)
* Add saving/loading JSON configuration.
* Implement Python pickle interface with new IO routines.
* Basic tests for training continuation.
2019-12-15 17:31:53 +08:00
Jiaming Yuan
208ab3b1ff
Model IO in JSON. (#5110) 2019-12-11 11:20:40 +08:00
Jiaming Yuan
e089e16e3d
Pass pointer to model parameters. (#5101)
* Pass pointer to model parameters.

This PR de-duplicates most of the model parameters except the one in
`tree_model.h`.  One difficulty is `base_score` is a model property but can be
changed at runtime by objective function.  Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective.  Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
2019-12-10 12:11:22 +08:00
Jiaming Yuan
608ebbe444
Fix GPU ID and prediction cache from pickle (#5086)
* Hack for saving GPU ID.

* Declare prediction cache on GBTree.

* Add a simple test.

* Add `auto` option for GPU Predictor.
2019-12-07 16:02:06 +08:00
Jiaming Yuan
64af1ecf86
[Breaking] Remove num roots. (#5059) 2019-12-05 21:58:43 +08:00
Kodi Arfer
f2277e7106 Use DART tree weights when computing SHAPs (#5050)
This PR fixes tree weights in dart being ignored when computing contributions.

* Fix ellpack page source link.
* Add tree weights to compute contribution.
2019-12-03 19:55:53 +08:00
KaiJin Ji
1733c9e8f7 Improve operation efficiency for single predict (#5016)
* Improve operation efficiency for single predict
2019-11-10 02:01:28 +08:00
Jiaming Yuan
755a606201
Fix dart usegpu. (#4984) 2019-10-28 06:12:04 -04:00
Jiaming Yuan
ac457c56a2
Use `UpdateAllowUnknown' for non-model related parameter. (#4961)
* Use `UpdateAllowUnknown' for non-model related parameter.

Model parameter can not pack an additional boolean value due to binary IO
format.  This commit deals only with non-model related parameter configuration.

* Add tidy command line arg for use-dmlc-gtest.
2019-10-23 05:50:12 -04:00
Jiaming Yuan
095de3bf5f
Export c++ headers in CMake installation. (#4897)
* Move get transpose into cc.

* Clean up headers in host device vector, remove thrust dependency.

* Move span and host device vector into public.

* Install c++ headers.

* Short notes for c and c++.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-10-06 23:53:09 -04:00
Jiaming Yuan
c0fbeff0ab
Restrict access to cfg_ in gbm. (#4801)
* Restrict access to `cfg_` in gbm.

* Verify having correct updaters.

* Remove `grow_global_histmaker`

This updater is the same as `grow_histmaker`.  The former is not in our
document so we just remove it.
2019-09-02 00:43:19 -04:00
Rong Ou
38ab79f889 Make HostDeviceVector single gpu only (#4773)
* Make HostDeviceVector single gpu only
2019-08-26 09:51:13 +12:00
Jiaming Yuan
fba298fecb
Prevent copying data to host. (#4795) 2019-08-20 23:06:27 -04:00
Rong Ou
851b5b3808 Remove gpu_exact tree method (#4742) 2019-08-07 11:43:20 +12:00
Rong Ou
6edddd7966 Refactor DMatrix to return batches of different page types (#4686)
* Use explicit template parameter for specifying page type.
2019-08-03 15:10:34 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
sriramch
a22368d210 Choose the appropriate tree method *only* when the tree method is auto (#4571)
* Remove redundant checks.
2019-06-17 18:16:45 +08:00
Jiaming Yuan
c5719cc457
Offload some configurations into GBM. (#4553)
This is part 1 of refactoring configuration.

* Move tree heuristic configurations.
* Split up declarations and definitions for GBTree.
* Implement UseGPU in gbm.
2019-06-14 09:18:51 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Jiaming Yuan
7735252925
Document num_parallel_tree. (#4022) 2018-12-25 22:00:58 +08:00
Rory Mitchell
84c99f86f4
Combine TreeModel and RegTree (#3995) 2018-12-19 12:16:40 +13:00
Jiaming Yuan
e0a279114e
Unify logging facilities. (#3982)
* Unify logging facilities.

* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
2018-12-14 19:29:58 +08:00
Andy Adinets
2a59ff2f9b Multi-GPU support in GPUPredictor. (#3738)
* Multi-GPU support in GPUPredictor.

- GPUPredictor is multi-GPU
- removed DeviceMatrix, as it has been made obsolete by using HostDeviceVector in DMatrix

* Replaced pointers with spans in GPUPredictor.

* Added a multi-GPU predictor test.

* Fix multi-gpu test.

* Fix n_rows < n_gpus.

* Reinitialize shards when GPUSet is changed.
* Tests range of data.

* Remove commented code.

* Remove commented code.
2018-10-23 22:59:11 -07:00
Rory Mitchell
70d208d68c
Dmatrix refactor stage 2 (#3395)
* DMatrix refactor 2

* Remove buffered rowset usage where possible

* Transition to c++11 style iterators for row access

* Transition column iterators to C++ 11
2018-10-01 01:29:03 +13:00
Andy Adinets
72cd1517d6 Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage. (#3446)
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.

- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring

* Added const version of HostDeviceVector API calls.

- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions

* Updated src/linear/updater_gpu_coordinate.cu.

* Added read-only state for HostDeviceVector sync.

- this means no copies are performed if both host and devices access
  the HostDeviceVector read-only

* Fixed linter and test errors.

- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
  e.g. in calls to cudaSetDevice()

* Fixed explicit template instantiation errors for HostDeviceVector.

- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>

* Fixed HostDeviceVector tests that require multiple GPUs.

- added a mock set device handler; when set, it is called instead of cudaSetDevice()
2018-08-30 14:28:47 +12:00
Rory Mitchell
645996b12f Remove accidental SparsePage copies (#3583) 2018-08-12 17:49:38 -07:00
Philip Hyunsu Cho
3c72654e3b
Revert "Fix #3485, #3540: Don't use dropout for predicting test sets" (#3563)
* Revert "Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)"

This reverts commit 44811f233071c5805d70c287abd22b155b732727.

* Document behavior of predict() for DART booster

* Add notice to parameter.rst
2018-08-08 09:48:55 -07:00
Philip Hyunsu Cho
44811f2330
Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)
* Fix #3485, #3540: Don't use dropout for predicting test sets

Dropout (for DART) should only be used at training time.

* Add regression test
2018-08-05 10:17:21 -07:00
Rory Mitchell
a96039141a
Dmatrix refactor stage 1 (#3301)
* Use sparse page as singular CSR matrix representation

* Simplify dmatrix methods

* Reduce statefullness of batch iterators

* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
2018-06-07 10:25:58 +12:00
Andrew V. Adinetz
b8a0d66fe6 Multi-GPU HostDeviceVector. (#3287)
* Multi-GPU HostDeviceVector.

- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes
2018-05-05 08:00:05 +12:00
Rory Mitchell
ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00
Andrew V. Adinetz
d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00
Vadim Khotilovich
9ffe8596f2
[core] fix slow predict-caching with many classes (#3109)
* fix prediction caching inefficiency for multiclass

* silence some warnings

* redundant if

* workaround for R v3.4.3 bug; fixes #3081
2018-02-15 18:31:42 -06:00
Scott Lundberg
d878c36c84 Add SHAP interaction effects, fix minor bug, and add cox loss (#3043)
* Add interaction effects and cox loss

* Minimize whitespace changes

* Cox loss now no longer needs a pre-sorted dataset.

* Address code review comments

* Remove mem check, rename to pred_interactions, include bias

* Make lint happy

* More lint fixes

* Fix cox loss indexing

* Fix main effects and tests

* Fix lint

* Use half interaction values on the off-diagonals

* Fix lint again
2018-02-07 20:38:01 -06:00
Thejaswi
84ab74f3a5 Objective function evaluation on GPU with minimal PCIe transfers (#2935)
* Added GPU objective function and no-copy interface.

- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
  and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
  directly on GPU
2018-01-12 21:33:39 +13:00