* Restrict access to `cfg_` in gbm. * Verify having correct updaters. * Remove `grow_global_histmaker` This updater is the same as `grow_histmaker`. The former is not in our document so we just remove it.
603 lines
20 KiB
C++
603 lines
20 KiB
C++
/*!
|
|
* Copyright 2014-2019 by Contributors
|
|
* \file gbtree.cc
|
|
* \brief gradient boosted tree implementation.
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <dmlc/omp.h>
|
|
#include <dmlc/parameter.h>
|
|
#include <dmlc/timer.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/gbm.h>
|
|
#include <xgboost/predictor.h>
|
|
#include <xgboost/tree_updater.h>
|
|
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <string>
|
|
#include <limits>
|
|
#include <algorithm>
|
|
|
|
#include "../common/common.h"
|
|
#include "../common/host_device_vector.h"
|
|
#include "../common/random.h"
|
|
#include "gbtree.h"
|
|
#include "gbtree_model.h"
|
|
#include "../common/timer.h"
|
|
|
|
|
|
namespace xgboost {
|
|
namespace gbm {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(gbtree);
|
|
|
|
void GBTree::Configure(const Args& cfg) {
|
|
this->cfg_ = cfg;
|
|
tparam_.InitAllowUnknown(cfg);
|
|
|
|
model_.Configure(cfg);
|
|
|
|
// for the 'update' process_type, move trees into trees_to_update
|
|
if (tparam_.process_type == TreeProcessType::kUpdate) {
|
|
model_.InitTreesToUpdate();
|
|
}
|
|
|
|
// configure predictors
|
|
if (!cpu_predictor_) {
|
|
cpu_predictor_ = std::unique_ptr<Predictor>(
|
|
Predictor::Create("cpu_predictor", this->learner_param_));
|
|
cpu_predictor_->Configure(cfg, cache_);
|
|
}
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
if (!gpu_predictor_) {
|
|
gpu_predictor_ = std::unique_ptr<Predictor>(
|
|
Predictor::Create("gpu_predictor", this->learner_param_));
|
|
gpu_predictor_->Configure(cfg, cache_);
|
|
}
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
monitor_.Init("GBTree");
|
|
|
|
specified_predictor_ = std::any_of(cfg.cbegin(), cfg.cend(),
|
|
[](std::pair<std::string, std::string> const& arg) {
|
|
return arg.first == "predictor";
|
|
});
|
|
if (!specified_predictor_ && tparam_.tree_method == TreeMethod::kGPUHist) {
|
|
tparam_.predictor = "gpu_predictor";
|
|
}
|
|
|
|
specified_updater_ = std::any_of(cfg.cbegin(), cfg.cend(),
|
|
[](std::pair<std::string, std::string> const& arg) {
|
|
return arg.first == "updater";
|
|
});
|
|
if (specified_updater_) {
|
|
LOG(WARNING) << "DANGER AHEAD: You have manually specified `updater` "
|
|
"parameter. The `tree_method` parameter will be ignored. "
|
|
"Incorrect sequence of updaters will produce undefined "
|
|
"behavior. For common uses, we recommend using "
|
|
"`tree_method` parameter instead.";
|
|
} else {
|
|
this->ConfigureUpdaters();
|
|
LOG(DEBUG) << "Using updaters: " << tparam_.updater_seq;
|
|
}
|
|
|
|
configured_ = true;
|
|
}
|
|
|
|
// FIXME(trivialfis): This handles updaters and predictor. Because the choice of updaters
|
|
// depends on whether external memory is used and how large is dataset. We can remove the
|
|
// dependency on DMatrix once `hist` tree method can handle external memory so that we can
|
|
// make it default.
|
|
void GBTree::ConfigureWithKnownData(Args const& cfg, DMatrix* fmat) {
|
|
std::string updater_seq = tparam_.updater_seq;
|
|
|
|
this->PerformTreeMethodHeuristic(fmat);
|
|
this->ConfigureUpdaters();
|
|
|
|
// initialize the updaters only when needed.
|
|
if (updater_seq != tparam_.updater_seq) {
|
|
LOG(DEBUG) << "Using updaters: " << tparam_.updater_seq;
|
|
this->updaters_.clear();
|
|
}
|
|
|
|
this->InitUpdater(cfg);
|
|
}
|
|
|
|
void GBTree::PerformTreeMethodHeuristic(DMatrix* fmat) {
|
|
if (specified_updater_) {
|
|
// This method is disabled when `updater` parameter is explicitly
|
|
// set, since only experts are expected to do so.
|
|
return;
|
|
}
|
|
// tparam_ is set before calling this function.
|
|
if (tparam_.tree_method != TreeMethod::kAuto) {
|
|
return;
|
|
}
|
|
|
|
tparam_.updater_seq = "grow_histmaker,prune";
|
|
if (rabit::IsDistributed()) {
|
|
LOG(WARNING) <<
|
|
"Tree method is automatically selected to be 'approx' "
|
|
"for distributed training.";
|
|
tparam_.tree_method = TreeMethod::kApprox;
|
|
} else if (!fmat->SingleColBlock()) {
|
|
LOG(WARNING) << "Tree method is automatically set to 'approx' "
|
|
"since external-memory data matrix is used.";
|
|
tparam_.tree_method = TreeMethod::kApprox;
|
|
} else if (fmat->Info().num_row_ >= (4UL << 20UL)) {
|
|
/* Choose tree_method='approx' automatically for large data matrix */
|
|
LOG(WARNING) << "Tree method is automatically selected to be "
|
|
"'approx' for faster speed. To use old behavior "
|
|
"(exact greedy algorithm on single machine), "
|
|
"set tree_method to 'exact'.";
|
|
tparam_.tree_method = TreeMethod::kApprox;
|
|
} else {
|
|
tparam_.tree_method = TreeMethod::kExact;
|
|
}
|
|
LOG(DEBUG) << "Using tree method: " << static_cast<int>(tparam_.tree_method);
|
|
}
|
|
|
|
void GBTree::ConfigureUpdaters() {
|
|
// `updater` parameter was manually specified
|
|
/* Choose updaters according to tree_method parameters */
|
|
switch (tparam_.tree_method) {
|
|
case TreeMethod::kAuto:
|
|
// Use heuristic to choose between 'exact' and 'approx' This
|
|
// choice is carried out in PerformTreeMethodHeuristic() before
|
|
// calling this function.
|
|
break;
|
|
case TreeMethod::kApprox:
|
|
tparam_.updater_seq = "grow_histmaker,prune";
|
|
break;
|
|
case TreeMethod::kExact:
|
|
tparam_.updater_seq = "grow_colmaker,prune";
|
|
break;
|
|
case TreeMethod::kHist:
|
|
LOG(INFO) <<
|
|
"Tree method is selected to be 'hist', which uses a "
|
|
"single updater grow_quantile_histmaker.";
|
|
tparam_.updater_seq = "grow_quantile_histmaker";
|
|
break;
|
|
case TreeMethod::kGPUHist:
|
|
this->AssertGPUSupport();
|
|
tparam_.updater_seq = "grow_gpu_hist";
|
|
if (!specified_predictor_) {
|
|
tparam_.predictor = "gpu_predictor";
|
|
}
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unknown tree_method ("
|
|
<< static_cast<int>(tparam_.tree_method) << ") detected";
|
|
}
|
|
}
|
|
|
|
void GBTree::DoBoost(DMatrix* p_fmat,
|
|
HostDeviceVector<GradientPair>* in_gpair,
|
|
ObjFunction* obj) {
|
|
std::vector<std::vector<std::unique_ptr<RegTree> > > new_trees;
|
|
const int ngroup = model_.param.num_output_group;
|
|
ConfigureWithKnownData(this->cfg_, p_fmat);
|
|
monitor_.Start("BoostNewTrees");
|
|
if (ngroup == 1) {
|
|
std::vector<std::unique_ptr<RegTree> > ret;
|
|
BoostNewTrees(in_gpair, p_fmat, 0, &ret);
|
|
new_trees.push_back(std::move(ret));
|
|
} else {
|
|
CHECK_EQ(in_gpair->Size() % ngroup, 0U)
|
|
<< "must have exactly ngroup*nrow gpairs";
|
|
// TODO(canonizer): perform this on GPU if HostDeviceVector has device set.
|
|
HostDeviceVector<GradientPair> tmp(in_gpair->Size() / ngroup,
|
|
GradientPair(),
|
|
in_gpair->DeviceIdx());
|
|
const auto& gpair_h = in_gpair->ConstHostVector();
|
|
auto nsize = static_cast<bst_omp_uint>(tmp.Size());
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
std::vector<GradientPair>& tmp_h = tmp.HostVector();
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
|
tmp_h[i] = gpair_h[i * ngroup + gid];
|
|
}
|
|
std::vector<std::unique_ptr<RegTree> > ret;
|
|
BoostNewTrees(&tmp, p_fmat, gid, &ret);
|
|
new_trees.push_back(std::move(ret));
|
|
}
|
|
}
|
|
monitor_.Stop("BoostNewTrees");
|
|
this->CommitModel(std::move(new_trees));
|
|
}
|
|
|
|
void GBTree::InitUpdater(Args const& cfg) {
|
|
std::string tval = tparam_.updater_seq;
|
|
std::vector<std::string> ups = common::Split(tval, ',');
|
|
|
|
if (updaters_.size() != 0) {
|
|
// Assert we have a valid set of updaters.
|
|
CHECK_EQ(ups.size(), updaters_.size());
|
|
for (auto const& up : updaters_) {
|
|
bool contains = std::any_of(ups.cbegin(), ups.cend(),
|
|
[&up](std::string const& name) {
|
|
return name == up->Name();
|
|
});
|
|
if (!contains) {
|
|
std::stringstream ss;
|
|
ss << "Internal Error: " << " mismatched updater sequence.\n";
|
|
ss << "Specified updaters: ";
|
|
std::for_each(ups.cbegin(), ups.cend(),
|
|
[&ss](std::string const& name){
|
|
ss << name << " ";
|
|
});
|
|
ss << "\n" << "Actual updaters: ";
|
|
std::for_each(updaters_.cbegin(), updaters_.cend(),
|
|
[&ss](std::unique_ptr<TreeUpdater> const& updater){
|
|
ss << updater->Name() << " ";
|
|
});
|
|
LOG(FATAL) << ss.str();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (const std::string& pstr : ups) {
|
|
std::unique_ptr<TreeUpdater> up(TreeUpdater::Create(pstr.c_str(), learner_param_));
|
|
up->Configure(cfg);
|
|
updaters_.push_back(std::move(up));
|
|
}
|
|
}
|
|
|
|
void GBTree::BoostNewTrees(HostDeviceVector<GradientPair>* gpair,
|
|
DMatrix *p_fmat,
|
|
int bst_group,
|
|
std::vector<std::unique_ptr<RegTree> >* ret) {
|
|
std::vector<RegTree*> new_trees;
|
|
ret->clear();
|
|
// create the trees
|
|
for (int i = 0; i < tparam_.num_parallel_tree; ++i) {
|
|
if (tparam_.process_type == TreeProcessType::kDefault) {
|
|
// create new tree
|
|
std::unique_ptr<RegTree> ptr(new RegTree());
|
|
ptr->param.InitAllowUnknown(this->cfg_);
|
|
new_trees.push_back(ptr.get());
|
|
ret->push_back(std::move(ptr));
|
|
} else if (tparam_.process_type == TreeProcessType::kUpdate) {
|
|
CHECK_LT(model_.trees.size(), model_.trees_to_update.size());
|
|
// move an existing tree from trees_to_update
|
|
auto t = std::move(model_.trees_to_update[model_.trees.size() +
|
|
bst_group * tparam_.num_parallel_tree + i]);
|
|
new_trees.push_back(t.get());
|
|
ret->push_back(std::move(t));
|
|
}
|
|
}
|
|
// update the trees
|
|
for (auto& up : updaters_) {
|
|
up->Update(gpair, p_fmat, new_trees);
|
|
}
|
|
}
|
|
|
|
void GBTree::CommitModel(std::vector<std::vector<std::unique_ptr<RegTree>>>&& new_trees) {
|
|
monitor_.Start("CommitModel");
|
|
int num_new_trees = 0;
|
|
for (int gid = 0; gid < model_.param.num_output_group; ++gid) {
|
|
num_new_trees += new_trees[gid].size();
|
|
model_.CommitModel(std::move(new_trees[gid]), gid);
|
|
}
|
|
CHECK(configured_);
|
|
GetPredictor()->UpdatePredictionCache(model_, &updaters_, num_new_trees);
|
|
monitor_.Stop("CommitModel");
|
|
}
|
|
|
|
|
|
// dart
|
|
class Dart : public GBTree {
|
|
public:
|
|
explicit Dart(bst_float base_margin) : GBTree(base_margin) {}
|
|
|
|
void Configure(const Args& cfg) override {
|
|
GBTree::Configure(cfg);
|
|
if (model_.trees.size() == 0) {
|
|
dparam_.InitAllowUnknown(cfg);
|
|
}
|
|
}
|
|
|
|
void Load(dmlc::Stream* fi) override {
|
|
GBTree::Load(fi);
|
|
weight_drop_.resize(model_.param.num_trees);
|
|
if (model_.param.num_trees != 0) {
|
|
fi->Read(&weight_drop_);
|
|
}
|
|
}
|
|
|
|
void Save(dmlc::Stream* fo) const override {
|
|
GBTree::Save(fo);
|
|
if (weight_drop_.size() != 0) {
|
|
fo->Write(weight_drop_);
|
|
}
|
|
}
|
|
|
|
// predict the leaf scores with dropout if ntree_limit = 0
|
|
void PredictBatch(DMatrix* p_fmat,
|
|
HostDeviceVector<bst_float>* out_preds,
|
|
unsigned ntree_limit) override {
|
|
DropTrees(ntree_limit);
|
|
PredLoopInternal<Dart>(p_fmat, &out_preds->HostVector(), 0, ntree_limit, true);
|
|
}
|
|
|
|
void PredictInstance(const SparsePage::Inst& inst,
|
|
std::vector<bst_float>* out_preds,
|
|
unsigned ntree_limit,
|
|
unsigned root_index) override {
|
|
DropTrees(1);
|
|
if (thread_temp_.size() == 0) {
|
|
thread_temp_.resize(1, RegTree::FVec());
|
|
thread_temp_[0].Init(model_.param.num_feature);
|
|
}
|
|
out_preds->resize(model_.param.num_output_group);
|
|
ntree_limit *= model_.param.num_output_group;
|
|
if (ntree_limit == 0 || ntree_limit > model_.trees.size()) {
|
|
ntree_limit = static_cast<unsigned>(model_.trees.size());
|
|
}
|
|
// loop over output groups
|
|
for (int gid = 0; gid < model_.param.num_output_group; ++gid) {
|
|
(*out_preds)[gid]
|
|
= PredValue(inst, gid, root_index,
|
|
&thread_temp_[0], 0, ntree_limit) + model_.base_margin;
|
|
}
|
|
}
|
|
|
|
bool UseGPU() const override {
|
|
return false;
|
|
}
|
|
|
|
protected:
|
|
friend class GBTree;
|
|
// internal prediction loop
|
|
// add predictions to out_preds
|
|
template<typename Derived>
|
|
inline void PredLoopInternal(
|
|
DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_preds,
|
|
unsigned tree_begin,
|
|
unsigned ntree_limit,
|
|
bool init_out_preds) {
|
|
int num_group = model_.param.num_output_group;
|
|
ntree_limit *= num_group;
|
|
if (ntree_limit == 0 || ntree_limit > model_.trees.size()) {
|
|
ntree_limit = static_cast<unsigned>(model_.trees.size());
|
|
}
|
|
|
|
if (init_out_preds) {
|
|
size_t n = num_group * p_fmat->Info().num_row_;
|
|
const auto& base_margin =
|
|
p_fmat->Info().base_margin_.ConstHostVector();
|
|
out_preds->resize(n);
|
|
if (base_margin.size() != 0) {
|
|
CHECK_EQ(out_preds->size(), n);
|
|
std::copy(base_margin.begin(), base_margin.end(), out_preds->begin());
|
|
} else {
|
|
std::fill(out_preds->begin(), out_preds->end(), model_.base_margin);
|
|
}
|
|
}
|
|
|
|
if (num_group == 1) {
|
|
PredLoopSpecalize<Derived>(p_fmat, out_preds, 1,
|
|
tree_begin, ntree_limit);
|
|
} else {
|
|
PredLoopSpecalize<Derived>(p_fmat, out_preds, num_group,
|
|
tree_begin, ntree_limit);
|
|
}
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline void PredLoopSpecalize(
|
|
DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_preds,
|
|
int num_group,
|
|
unsigned tree_begin,
|
|
unsigned tree_end) {
|
|
const MetaInfo& info = p_fmat->Info();
|
|
const int nthread = omp_get_max_threads();
|
|
CHECK_EQ(num_group, model_.param.num_output_group);
|
|
InitThreadTemp(nthread);
|
|
std::vector<bst_float>& preds = *out_preds;
|
|
CHECK_EQ(model_.param.size_leaf_vector, 0)
|
|
<< "size_leaf_vector is enforced to 0 so far";
|
|
CHECK_EQ(preds.size(), p_fmat->Info().num_row_ * num_group);
|
|
// start collecting the prediction
|
|
auto* self = static_cast<Derived*>(this);
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
constexpr int kUnroll = 8;
|
|
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
|
const bst_omp_uint rest = nsize % kUnroll;
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nsize - rest; i += kUnroll) {
|
|
const int tid = omp_get_thread_num();
|
|
RegTree::FVec& feats = thread_temp_[tid];
|
|
int64_t ridx[kUnroll];
|
|
SparsePage::Inst inst[kUnroll];
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
ridx[k] = static_cast<int64_t>(batch.base_rowid + i + k);
|
|
}
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
inst[k] = batch[i + k];
|
|
}
|
|
for (int k = 0; k < kUnroll; ++k) {
|
|
for (int gid = 0; gid < num_group; ++gid) {
|
|
const size_t offset = ridx[k] * num_group + gid;
|
|
preds[offset] +=
|
|
self->PredValue(inst[k], gid, info.GetRoot(ridx[k]),
|
|
&feats, tree_begin, tree_end);
|
|
}
|
|
}
|
|
}
|
|
for (bst_omp_uint i = nsize - rest; i < nsize; ++i) {
|
|
RegTree::FVec& feats = thread_temp_[0];
|
|
const auto ridx = static_cast<int64_t>(batch.base_rowid + i);
|
|
const SparsePage::Inst inst = batch[i];
|
|
for (int gid = 0; gid < num_group; ++gid) {
|
|
const size_t offset = ridx * num_group + gid;
|
|
preds[offset] +=
|
|
self->PredValue(inst, gid, info.GetRoot(ridx),
|
|
&feats, tree_begin, tree_end);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// commit new trees all at once
|
|
void
|
|
CommitModel(std::vector<std::vector<std::unique_ptr<RegTree>>>&& new_trees) override {
|
|
int num_new_trees = 0;
|
|
for (int gid = 0; gid < model_.param.num_output_group; ++gid) {
|
|
num_new_trees += new_trees[gid].size();
|
|
model_.CommitModel(std::move(new_trees[gid]), gid);
|
|
}
|
|
size_t num_drop = NormalizeTrees(num_new_trees);
|
|
LOG(INFO) << "drop " << num_drop << " trees, "
|
|
<< "weight = " << weight_drop_.back();
|
|
}
|
|
|
|
// predict the leaf scores without dropped trees
|
|
inline bst_float PredValue(const SparsePage::Inst &inst,
|
|
int bst_group,
|
|
unsigned root_index,
|
|
RegTree::FVec *p_feats,
|
|
unsigned tree_begin,
|
|
unsigned tree_end) {
|
|
bst_float psum = 0.0f;
|
|
p_feats->Fill(inst);
|
|
for (size_t i = tree_begin; i < tree_end; ++i) {
|
|
if (model_.tree_info[i] == bst_group) {
|
|
bool drop = (std::binary_search(idx_drop_.begin(), idx_drop_.end(), i));
|
|
if (!drop) {
|
|
int tid = model_.trees[i]->GetLeafIndex(*p_feats, root_index);
|
|
psum += weight_drop_[i] * (*model_.trees[i])[tid].LeafValue();
|
|
}
|
|
}
|
|
}
|
|
p_feats->Drop(inst);
|
|
return psum;
|
|
}
|
|
|
|
// select which trees to drop
|
|
inline void DropTrees(unsigned ntree_limit_drop) {
|
|
idx_drop_.clear();
|
|
if (ntree_limit_drop > 0) return;
|
|
|
|
std::uniform_real_distribution<> runif(0.0, 1.0);
|
|
auto& rnd = common::GlobalRandom();
|
|
bool skip = false;
|
|
if (dparam_.skip_drop > 0.0) skip = (runif(rnd) < dparam_.skip_drop);
|
|
// sample some trees to drop
|
|
if (!skip) {
|
|
if (dparam_.sample_type == 1) {
|
|
bst_float sum_weight = 0.0;
|
|
for (auto elem : weight_drop_) {
|
|
sum_weight += elem;
|
|
}
|
|
for (size_t i = 0; i < weight_drop_.size(); ++i) {
|
|
if (runif(rnd) < dparam_.rate_drop * weight_drop_.size() * weight_drop_[i] / sum_weight) {
|
|
idx_drop_.push_back(i);
|
|
}
|
|
}
|
|
if (dparam_.one_drop && idx_drop_.empty() && !weight_drop_.empty()) {
|
|
// the expression below is an ugly but MSVC2013-friendly equivalent of
|
|
// size_t i = std::discrete_distribution<size_t>(weight_drop.begin(),
|
|
// weight_drop.end())(rnd);
|
|
size_t i = std::discrete_distribution<size_t>(
|
|
weight_drop_.size(), 0., static_cast<double>(weight_drop_.size()),
|
|
[this](double x) -> double {
|
|
return weight_drop_[static_cast<size_t>(x)];
|
|
})(rnd);
|
|
idx_drop_.push_back(i);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < weight_drop_.size(); ++i) {
|
|
if (runif(rnd) < dparam_.rate_drop) {
|
|
idx_drop_.push_back(i);
|
|
}
|
|
}
|
|
if (dparam_.one_drop && idx_drop_.empty() && !weight_drop_.empty()) {
|
|
size_t i = std::uniform_int_distribution<size_t>(0, weight_drop_.size() - 1)(rnd);
|
|
idx_drop_.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// set normalization factors
|
|
inline size_t NormalizeTrees(size_t size_new_trees) {
|
|
float lr = 1.0 * dparam_.learning_rate / size_new_trees;
|
|
size_t num_drop = idx_drop_.size();
|
|
if (num_drop == 0) {
|
|
for (size_t i = 0; i < size_new_trees; ++i) {
|
|
weight_drop_.push_back(1.0);
|
|
}
|
|
} else {
|
|
if (dparam_.normalize_type == 1) {
|
|
// normalize_type 1
|
|
float factor = 1.0 / (1.0 + lr);
|
|
for (auto i : idx_drop_) {
|
|
weight_drop_[i] *= factor;
|
|
}
|
|
for (size_t i = 0; i < size_new_trees; ++i) {
|
|
weight_drop_.push_back(factor);
|
|
}
|
|
} else {
|
|
// normalize_type 0
|
|
float factor = 1.0 * num_drop / (num_drop + lr);
|
|
for (auto i : idx_drop_) {
|
|
weight_drop_[i] *= factor;
|
|
}
|
|
for (size_t i = 0; i < size_new_trees; ++i) {
|
|
weight_drop_.push_back(1.0 / (num_drop + lr));
|
|
}
|
|
}
|
|
}
|
|
// reset
|
|
idx_drop_.clear();
|
|
return num_drop;
|
|
}
|
|
|
|
// init thread buffers
|
|
inline void InitThreadTemp(int nthread) {
|
|
int prev_thread_temp_size = thread_temp_.size();
|
|
if (prev_thread_temp_size < nthread) {
|
|
thread_temp_.resize(nthread, RegTree::FVec());
|
|
for (int i = prev_thread_temp_size; i < nthread; ++i) {
|
|
thread_temp_[i].Init(model_.param.num_feature);
|
|
}
|
|
}
|
|
}
|
|
|
|
// --- data structure ---
|
|
// training parameter
|
|
DartTrainParam dparam_;
|
|
/*! \brief prediction buffer */
|
|
std::vector<bst_float> weight_drop_;
|
|
// indexes of dropped trees
|
|
std::vector<size_t> idx_drop_;
|
|
// temporal storage for per thread
|
|
std::vector<RegTree::FVec> thread_temp_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(GBTreeModelParam);
|
|
DMLC_REGISTER_PARAMETER(GBTreeTrainParam);
|
|
DMLC_REGISTER_PARAMETER(DartTrainParam);
|
|
|
|
XGBOOST_REGISTER_GBM(GBTree, "gbtree")
|
|
.describe("Tree booster, gradient boosted trees.")
|
|
.set_body([](const std::vector<std::shared_ptr<DMatrix> >& cached_mats, bst_float base_margin) {
|
|
auto* p = new GBTree(base_margin);
|
|
p->InitCache(cached_mats);
|
|
return p;
|
|
});
|
|
XGBOOST_REGISTER_GBM(Dart, "dart")
|
|
.describe("Tree booster, dart.")
|
|
.set_body([](const std::vector<std::shared_ptr<DMatrix> >& cached_mats, bst_float base_margin) {
|
|
GBTree* p = new Dart(base_margin);
|
|
return p;
|
|
});
|
|
} // namespace gbm
|
|
} // namespace xgboost
|