text vignette

This commit is contained in:
El Potaeto 2015-02-10 19:46:39 +01:00
parent cefd55ef00
commit d7ba5c1511

View File

@ -83,23 +83,24 @@ Xgboost offer a way to group them in a `xgb.DMatrix`. You can even add other met
```{r trainingDense, message=F, warning=F}
dtrain <- xgb.DMatrix(data = train$data, label = train$label)
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic")
bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic")
```
# Verbose = 0,1,2
Below is a demonstration of the effect of verbose parameter.
```{r trainingVerbose, message=T, warning=F}
print ('train xgboost with verbose 0, no message')
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2,
objective = "binary:logistic", verbose = 0)
print ('train xgboost with verbose 1, print evaluation metric')
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2,
objective = "binary:logistic", verbose = 1)
print ('train xgboost with verbose 2, also print information about tree')
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2,
objective = "binary:logistic", verbose = 2)
# you can also specify data as file path to a LibSVM format input
# since we do not have this file with us, the following line is just for illustration
# bst <- xgboost(data = 'agaricus.train.svm', max.depth = 2, eta = 1, nround = 2,objective = "binary:logistic")
```
#--------------------basic prediction using xgboost--------------
# you can do prediction using the following line