diff --git a/R-package/vignettes/xgboostPresentation.Rmd b/R-package/vignettes/xgboostPresentation.Rmd index 77a250a2c..29b8e40f1 100644 --- a/R-package/vignettes/xgboostPresentation.Rmd +++ b/R-package/vignettes/xgboostPresentation.Rmd @@ -83,23 +83,24 @@ Xgboost offer a way to group them in a `xgb.DMatrix`. You can even add other met ```{r trainingDense, message=F, warning=F} dtrain <- xgb.DMatrix(data = train$data, label = train$label) -bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic") +bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic") ``` -# Verbose = 0,1,2 +Below is a demonstration of the effect of verbose parameter. + +```{r trainingVerbose, message=T, warning=F} print ('train xgboost with verbose 0, no message') bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic", verbose = 0) + print ('train xgboost with verbose 1, print evaluation metric') bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic", verbose = 1) + print ('train xgboost with verbose 2, also print information about tree') bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nround = 2, objective = "binary:logistic", verbose = 2) - -# you can also specify data as file path to a LibSVM format input -# since we do not have this file with us, the following line is just for illustration -# bst <- xgboost(data = 'agaricus.train.svm', max.depth = 2, eta = 1, nround = 2,objective = "binary:logistic") +``` #--------------------basic prediction using xgboost-------------- # you can do prediction using the following line