[CLI] initial refactor of CLI

This commit is contained in:
tqchen 2016-01-05 20:43:13 -08:00
parent 0d95e863c9
commit cee148ed64
5 changed files with 357 additions and 340 deletions

View File

@ -57,7 +57,7 @@ endif
# specify tensor path
.PHONY: clean all lint clean_all
all: lib/libxgboost.a lib/libxgboost.so
all: lib/libxgboost.a lib/libxgboost.so xgboost
$(DMLC_CORE)/libdmlc.a:
+ cd $(DMLC_CORE); make libdmlc.a config=$(ROOTDIR)/$(config); cd $(ROOTDIR)
@ -66,9 +66,10 @@ $(RABIT)/lib/$(LIB_RABIT):
+ cd $(RABIT); make lib/$(LIB_RABIT); cd $(ROOTDIR)
SRC = $(wildcard src/*.cc src/*/*.cc)
OBJ = $(patsubst src/%.cc, build/%.o, $(SRC))
ALL_OBJ = $(patsubst src/%.cc, build/%.o, $(SRC))
LIB_DEP = $(DMLC_CORE)/libdmlc.a $(RABIT)/lib/$(LIB_RABIT)
ALL_DEP = $(OBJ) $(LIB_DEP)
ALL_DEP = $(filter-out build/cli_main.o, $(ALL_OBJ)) $(LIB_DEP)
CLI_OBJ = build/cli_main.o
build/%.o: src/%.cc
@mkdir -p $(@D)
@ -83,6 +84,9 @@ lib/libxgboost.so: $(ALL_DEP)
@mkdir -p $(@D)
$(CXX) $(CFLAGS) -shared -o $@ $(filter %.o %.a, $^) $(LDFLAGS)
xgboost: lib/libxgboost.a $(CLI_OBJ) $(LIB_DEP)
$(CXX) $(CFLAGS) -o $@ $(filter %.o %.a, $^) $(LDFLAGS)
lint:
python2 dmlc-core/scripts/lint.py xgboost ${LINT_LANG} include src

View File

@ -36,6 +36,13 @@ typedef void *BoosterHandle;
*/
XGB_DLL const char *XGBGetLastError();
/*!
* \brief Entry point of CLI program.
* \param argc The number of arguments.
* \param argv The command line arguments.
*/
XGB_DLL int XGBoostCLIMain(int argc, char* argv[])
/*!
* \brief load a data matrix
* \param fname the name of the file

View File

@ -9,6 +9,7 @@
#include <dmlc/base.h>
#include <dmlc/data.h>
#include <string>
#include <memory>
#include <vector>
#include "./base.h"
@ -252,7 +253,7 @@ class DMatrix {
* \param fname The file name to be saved.
* \return The created DMatrix.
*/
virtual void SaveToLocalFile(const char* fname);
virtual void SaveToLocalFile(const std::string& fname);
/*!
* \brief Load DMatrix from URI.
* \param uri The URI of input.
@ -260,7 +261,7 @@ class DMatrix {
* \param load_row_split Flag to read in part of rows, divided among the workers in distributed mode.
* \return The created DMatrix.
*/
static DMatrix* Load(const char* uri,
static DMatrix* Load(const std::string& uri,
bool silent,
bool load_row_split);
/*!

View File

@ -1,335 +0,0 @@
// Copyright 2014 by Contributors
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
#define NOMINMAX
#include <ctime>
#include <string>
#include <cstring>
#include <vector>
#include "./sync/sync.h"
#include "./io/io.h"
#include "./utils/utils.h"
#include "./utils/config.h"
#include "./learner/learner-inl.hpp"
namespace xgboost {
/*!
* \brief wrapping the training process
*/
class BoostLearnTask {
public:
inline int Run(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: <config>\n");
return 0;
}
utils::ConfigIterator itr(argv[1]);
while (itr.Next()) {
this->SetParam(itr.name(), itr.val());
}
for (int i = 2; i < argc; ++i) {
char name[256], val[256];
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2) {
this->SetParam(name, val);
}
}
// do not save anything when save to stdout
if (model_out == "stdout" || name_pred == "stdout") {
this->SetParam("silent", "1");
save_period = 0;
}
// initialized the result
rabit::Init(argc, argv);
if (rabit::IsDistributed()) {
std::string pname = rabit::GetProcessorName();
fprintf(stderr, "start %s:%d\n", pname.c_str(), rabit::GetRank());
}
if (rabit::IsDistributed() && data_split == "NONE") {
this->SetParam("dsplit", "row");
}
if (rabit::GetRank() != 0) {
this->SetParam("silent", "2");
}
this->InitData();
if (task == "train") {
// if task is training, will try recover from checkpoint
this->TaskTrain();
return 0;
} else {
this->InitLearner();
}
if (task == "dump") {
this->TaskDump(); return 0;
}
if (task == "eval") {
this->TaskEval(); return 0;
}
if (task == "pred") {
this->TaskPred();
}
return 0;
}
inline void SetParam(const char *name, const char *val) {
if (!strcmp("silent", name)) silent = atoi(val);
if (!strcmp("use_buffer", name)) use_buffer = atoi(val);
if (!strcmp("num_round", name)) num_round = atoi(val);
if (!strcmp("pred_margin", name)) pred_margin = atoi(val);
if (!strcmp("ntree_limit", name)) ntree_limit = atoi(val);
if (!strcmp("save_period", name)) save_period = atoi(val);
if (!strcmp("eval_train", name)) eval_train = atoi(val);
if (!strcmp("task", name)) task = val;
if (!strcmp("data", name)) train_path = val;
if (!strcmp("test:data", name)) test_path = val;
if (!strcmp("model_in", name)) model_in = val;
if (!strcmp("model_out", name)) model_out = val;
if (!strcmp("model_dir", name)) model_dir_path = val;
if (!strcmp("fmap", name)) name_fmap = val;
if (!strcmp("name_dump", name)) name_dump = val;
if (!strcmp("name_pred", name)) name_pred = val;
if (!strcmp("dsplit", name)) data_split = val;
if (!strcmp("dump_stats", name)) dump_model_stats = atoi(val);
if (!strcmp("save_pbuffer", name)) save_with_pbuffer = atoi(val);
if (!strncmp("eval[", name, 5)) {
char evname[256];
utils::Assert(sscanf(name, "eval[%[^]]", evname) == 1,
"must specify evaluation name for display");
eval_data_names.push_back(std::string(evname));
eval_data_paths.push_back(std::string(val));
}
learner.SetParam(name, val);
}
public:
BoostLearnTask(void) {
// default parameters
silent = 0;
use_buffer = 1;
num_round = 10;
save_period = 0;
eval_train = 0;
pred_margin = 0;
ntree_limit = 0;
dump_model_stats = 0;
task = "train";
model_in = "NULL";
model_out = "NULL";
name_fmap = "NULL";
name_pred = "pred.txt";
name_dump = "dump.txt";
model_dir_path = "./";
data_split = "NONE";
load_part = 0;
save_with_pbuffer = 0;
data = NULL;
}
~BoostLearnTask(void) {
for (size_t i = 0; i < deval.size(); i++) {
delete deval[i];
}
if (data != NULL) delete data;
}
private:
inline void InitData(void) {
if (strchr(train_path.c_str(), '%') != NULL) {
char s_tmp[256];
utils::SPrintf(s_tmp, sizeof(s_tmp), train_path.c_str(), rabit::GetRank());
train_path = s_tmp;
load_part = 1;
}
bool loadsplit = data_split == "row";
if (name_fmap != "NULL") fmap.LoadText(name_fmap.c_str());
if (task == "dump") return;
if (task == "pred") {
data = io::LoadDataMatrix(test_path.c_str(), silent != 0, use_buffer != 0, loadsplit);
} else {
// training
data = io::LoadDataMatrix(train_path.c_str(),
silent != 0 && load_part == 0,
use_buffer != 0, loadsplit);
utils::Assert(eval_data_names.size() == eval_data_paths.size(), "BUG");
for (size_t i = 0; i < eval_data_names.size(); ++i) {
deval.push_back(io::LoadDataMatrix(eval_data_paths[i].c_str(),
silent != 0,
use_buffer != 0,
loadsplit));
devalall.push_back(deval.back());
}
std::vector<io::DataMatrix *> dcache(1, data);
for (size_t i = 0; i < deval.size(); ++i) {
dcache.push_back(deval[i]);
}
// set cache data to be all training and evaluation data
learner.SetCacheData(dcache);
// add training set to evaluation set if needed
if (eval_train != 0) {
devalall.push_back(data);
eval_data_names.push_back(std::string("train"));
}
}
}
inline void InitLearner(void) {
if (model_in != "NULL") {
learner.LoadModel(model_in.c_str());
} else {
utils::Assert(task == "train", "model_in not specified");
learner.InitModel();
}
}
inline void TaskTrain(void) {
int version = rabit::LoadCheckPoint(&learner);
if (version == 0) this->InitLearner();
const time_t start = time(NULL);
unsigned long elapsed = 0; // NOLINT(*)
learner.CheckInit(data);
bool allow_lazy = learner.AllowLazyCheckPoint();
for (int i = version / 2; i < num_round; ++i) {
elapsed = (unsigned long)(time(NULL) - start); // NOLINT(*)
if (version % 2 == 0) {
if (!silent) printf("boosting round %d, %lu sec elapsed\n", i, elapsed);
learner.UpdateOneIter(i, *data);
if (allow_lazy) {
rabit::LazyCheckPoint(&learner);
} else {
rabit::CheckPoint(&learner);
}
version += 1;
}
utils::Assert(version == rabit::VersionNumber(), "consistent check");
std::string res = learner.EvalOneIter(i, devalall, eval_data_names);
if (rabit::IsDistributed()) {
if (rabit::GetRank() == 0) {
rabit::TrackerPrintf("%s\n", res.c_str());
}
} else {
if (silent < 2) {
fprintf(stderr, "%s\n", res.c_str());
}
}
if (save_period != 0 && (i + 1) % save_period == 0) {
this->SaveModel(i);
}
if (allow_lazy) {
rabit::LazyCheckPoint(&learner);
} else {
rabit::CheckPoint(&learner);
}
version += 1;
utils::Assert(version == rabit::VersionNumber(), "consistent check");
elapsed = (unsigned long)(time(NULL) - start); // NOLINT(*)
}
// always save final round
if ((save_period == 0 || num_round % save_period != 0) && model_out != "NONE") {
if (model_out == "NULL") {
this->SaveModel(num_round - 1);
} else {
this->SaveModel(model_out.c_str());
}
}
if (!silent) {
printf("\nupdating end, %lu sec in all\n", elapsed);
}
}
inline void TaskEval(void) {
learner.EvalOneIter(0, devalall, eval_data_names);
}
inline void TaskDump(void) {
FILE *fo = utils::FopenCheck(name_dump.c_str(), "w");
std::vector<std::string> dump = learner.DumpModel(fmap, dump_model_stats != 0);
for (size_t i = 0; i < dump.size(); ++i) {
fprintf(fo, "booster[%lu]:\n", i);
fprintf(fo, "%s", dump[i].c_str());
}
fclose(fo);
}
inline void SaveModel(const char *fname) const {
if (rabit::GetRank() != 0) return;
learner.SaveModel(fname, save_with_pbuffer != 0);
}
inline void SaveModel(int i) const {
char fname[256];
utils::SPrintf(fname, sizeof(fname),
"%s/%04d.model", model_dir_path.c_str(), i + 1);
this->SaveModel(fname);
}
inline void TaskPred(void) {
std::vector<float> preds;
if (!silent) printf("start prediction...\n");
learner.Predict(*data, pred_margin != 0, &preds, ntree_limit);
if (!silent) printf("writing prediction to %s\n", name_pred.c_str());
FILE *fo;
if (name_pred != "stdout") {
fo = utils::FopenCheck(name_pred.c_str(), "w");
} else {
fo = stdout;
}
for (size_t i = 0; i < preds.size(); ++i) {
fprintf(fo, "%g\n", preds[i]);
}
if (fo != stdout) fclose(fo);
}
private:
/*! \brief whether silent */
int silent;
/*! \brief special load */
int load_part;
/*! \brief whether use auto binary buffer */
int use_buffer;
/*! \brief whether evaluate training statistics */
int eval_train;
/*! \brief number of boosting iterations */
int num_round;
/*! \brief the period to save the model, 0 means only save the final round model */
int save_period;
/*! \brief the path of training/test data set */
std::string train_path, test_path;
/*! \brief the path of test model file, or file to restart training */
std::string model_in;
/*! \brief the path of final model file, to be saved */
std::string model_out;
/*! \brief the path of directory containing the saved models */
std::string model_dir_path;
/*! \brief task to perform */
std::string task;
/*! \brief name of predict file */
std::string name_pred;
/*! \brief data split mode */
std::string data_split;
/*!\brief limit number of trees in prediction */
int ntree_limit;
/*!\brief whether to directly output margin value */
int pred_margin;
/*! \brief whether dump statistics along with model */
int dump_model_stats;
/*! \brief whether save prediction buffer */
int save_with_pbuffer;
/*! \brief name of feature map */
std::string name_fmap;
/*! \brief name of dump file */
std::string name_dump;
/*! \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/*! \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
private:
io::DataMatrix* data;
std::vector<io::DataMatrix*> deval;
std::vector<const io::DataMatrix*> devalall;
utils::FeatMap fmap;
learner::BoostLearner learner;
};
} // namespace xgboost
int main(int argc, char *argv[]) {
xgboost::BoostLearnTask tsk;
tsk.SetParam("seed", "0");
int ret = tsk.Run(argc, argv);
rabit::Finalize();
return ret;
}

340
src/cli_main.cc Normal file
View File

@ -0,0 +1,340 @@
/*!
* Copyright 2014 by Contributors
* \file cli_main.cc
* \brief The command line interface program of xgboost.
* This file is not included in dynamic library.
*/
// Copyright 2014 by Contributors
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
#define NOMINMAX
#include <xgboost/learner.h>
#include <xgboost/data.h>
#include <dmlc/logging.h>
#include <dmlc/timer.h>
#include <ctime>
#include <string>
#include <cstdio>
#include <cstring>
#include <vector>
#include "./common/sync.h"
#include "./common/config.h"
namespace xgboost {
enum CLITask {
kTrain = 0,
kDump2Text = 1,
kPredict = 2
};
struct CLIParam : public dmlc::Parameter<CLIParam> {
/*! \brief the task name */
int task;
/*! \brief whether silent */
int silent;
/*! \brief whether evaluate training statistics */
bool eval_train;
/*! \brief number of boosting iterations */
int num_round;
/*! \brief the period to save the model, 0 means only save the final round model */
int save_period;
/*! \brief the path of training set */
std::string train_path;
/*! \brief path of test dataset */
std::string test_path;
/*! \brief the path of test model file, or file to restart training */
std::string model_in;
/*! \brief the path of final model file, to be saved */
std::string model_out;
/*! \brief the path of directory containing the saved models */
std::string model_dir;
/*! \brief name of predict file */
std::string name_pred;
/*! \brief data split mode */
int dsplit;
/*!\brief limit number of trees in prediction */
int ntree_limit;
/*!\brief whether to directly output margin value */
bool pred_margin;
/*! \brief whether dump statistics along with model */
int dump_stats;
/*! \brief name of feature map */
std::string name_fmap;
/*! \brief name of dump file */
std::string name_dump;
/*! \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/*! \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
/*! \brief all the configurations */
std::vector<std::pair<std::string, std::string> > cfg;
// declare parameters
DMLC_DECLARE_PARAMETER(CLIParam) {
// NOTE: declare everything except eval_data_paths.
DMLC_DECLARE_FIELD(task).set_default(kTrain)
.add_enum("train", kTrain)
.add_enum("dump", kDump2Text)
.add_enum("pred", kPredict)
.describe("Task to be performed by the CLI program.");
DMLC_DECLARE_FIELD(silent).set_default(0).set_range(0, 2)
.describe("Silent level during the task.");
DMLC_DECLARE_FIELD(eval_train).set_default(false)
.describe("Whether evaluate on training data during training.");
DMLC_DECLARE_FIELD(num_round).set_default(10).set_lower_bound(1)
.describe("Number of boosting iterations");
DMLC_DECLARE_FIELD(save_period).set_default(0).set_lower_bound(0)
.describe("The period to save the model, 0 means only save final model.");
DMLC_DECLARE_FIELD(train_path).set_default("NULL")
.describe("Training data path.");
DMLC_DECLARE_FIELD(test_path).set_default("NULL")
.describe("Test data path.");
DMLC_DECLARE_FIELD(model_in).set_default("NULL")
.describe("Input model path, if any.");
DMLC_DECLARE_FIELD(model_out).set_default("NULL")
.describe("Output model path, if any.");
DMLC_DECLARE_FIELD(model_dir).set_default("./")
.describe("Output directory of period checkpoint.");
DMLC_DECLARE_FIELD(name_pred).set_default("pred.txt")
.describe("Name of the prediction file.");
DMLC_DECLARE_FIELD(dsplit).set_default(0)
.add_enum("auto", 0)
.add_enum("col", 1)
.add_enum("row", 2)
.describe("Data split mode.");
DMLC_DECLARE_FIELD(ntree_limit).set_default(0).set_lower_bound(0)
.describe("Number of trees used for prediction, 0 means use all trees.");
DMLC_DECLARE_FIELD(dump_stats).set_default(false)
.describe("Whether dump the model statistics.");
DMLC_DECLARE_FIELD(name_fmap).set_default("NULL")
.describe("Name of the feature map file.");
DMLC_DECLARE_FIELD(name_dump).set_default("dump.txt")
.describe("Name of the output dump text file.");
// alias
DMLC_DECLARE_ALIAS(train_path, data);
DMLC_DECLARE_ALIAS(test_path, "test:data");
}
// customized configure function of CLIParam
inline void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) {
this->cfg = cfg;
this->InitAllowUnknown(cfg);
for (const auto& kv : cfg) {
if (!strncmp("eval[", kv.first.c_str(), 5)) {
char evname[256];
CHECK_EQ(sscanf(kv.first.c_str(), "eval[%[^]]", evname), 1)
<< "must specify evaluation name for display";
eval_data_names.push_back(std::string(evname));
eval_data_paths.push_back(kv.second);
}
}
// constraint.
if (name_pred == "stdout") {
save_period = 0;
silent = 1;
}
if (dsplit == 0 && rabit::IsDistributed()) {
dsplit = 2;
}
if (rabit::GetRank() != 0) {
silent = 2;
}
}
};
DMLC_REGISTER_PARAMETER(CLIParam);
void CLITrain(const CLIParam& param) {
if (rabit::IsDistributed()) {
std::string pname = rabit::GetProcessorName();
LOG(INFO) << "start " << pname << ":" << rabit::GetRank();
}
// load in data.
std::unique_ptr<DMatrix> dtrain(
DMatrix::Load(param.train_path, param.silent != 0, param.dsplit == 2));
std::vector<std::unique_ptr<DMatrix> > deval;
std::vector<DMatrix*> cache_mats, eval_datasets;
cache_mats.push_back(dtrain.get());
for (size_t i = 0; i < param.eval_data_names.size(); ++i) {
deval.emplace_back(
DMatrix::Load(param.eval_data_paths[i], param.silent != 0, param.dsplit == 2));
eval_datasets.push_back(deval.back().get());
cache_mats.push_back(deval.back().get());
}
std::vector<std::string> eval_data_names = param.eval_data_names;
if (param.eval_train) {
eval_datasets.push_back(dtrain.get());
eval_data_names.push_back(std::string("train"));
}
// initialize the learner.
std::unique_ptr<Learner> learner(Learner::Create(cache_mats));
learner->Configure(param.cfg);
int version = rabit::LoadCheckPoint(learner.get());
if (version == 0) {
// initializ the model if needed.
if (param.model_in != "NULL") {
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
}
}
// start training.
const double start = dmlc::GetTime();
for (int i = version / 2; i < param.num_round; ++i) {
double elapsed = dmlc::GetTime() - start;
if (version % 2 == 0) {
if (param.silent == 0) {
LOG(INFO) << "boosting round " << i << ", " << elapsed << " sec elapsed";
}
learner->UpdateOneIter(i, dtrain.get());
if (learner->AllowLazyCheckPoint()) {
rabit::LazyCheckPoint(learner.get());
} else {
rabit::CheckPoint(learner.get());
}
version += 1;
}
CHECK_EQ(version, rabit::VersionNumber());
std::string res = learner->EvalOneIter(i, eval_datasets, eval_data_names);
if (rabit::IsDistributed()) {
if (rabit::GetRank() == 0) {
rabit::TrackerPrint(res + "\n");
}
} else {
if (param.silent < 2) {
LOG(INFO) << res;
}
}
if (param.save_period != 0 && (i + 1) % param.save_period == 0) {
std::ostringstream os;
os << param.model_dir << '/' << i + 1 << ".model";
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
}
if (learner->AllowLazyCheckPoint()) {
rabit::LazyCheckPoint(learner.get());
} else {
rabit::CheckPoint(learner.get());
}
version += 1;
CHECK_EQ(version, rabit::VersionNumber());
}
// always save final round
if ((param.save_period == 0 || param.num_round % param.save_period != 0) &&
param.model_out != "NONE") {
std::ostringstream os;
if (param.model_out == "NULL") {
os << param.model_dir << '/' << param.num_round << ".model";
} else {
os << param.model_out;
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
}
if (param.silent == 0) {
double elapsed = dmlc::GetTime() - start;
LOG(INFO) << "update end, " << elapsed << " sec in all";
}
}
void CLIDump2Text(const CLIParam& param) {
FeatureMap fmap;
if (param.name_fmap != "NULL") {
std::unique_ptr<dmlc::Stream> fs(
dmlc::Stream::Create(param.name_fmap.c_str(), "r"));
dmlc::istream is(fs.get());
fmap.LoadText(is);
}
// load model
CHECK_NE(param.model_in, "NULL")
<< "Must specifiy model_in for dump";
std::unique_ptr<Learner> learner(Learner::Create({}));
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
// dump data
std::vector<std::string> dump = learner->Dump2Text(fmap, param.dump_stats);
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(param.name_dump.c_str(), "w"));
dmlc::ostream os(fo.get());
for (size_t i = 0; i < dump.size(); ++i) {
os << "booster[" << i << "]:\n";
os << dump[i];
}
// force flush before fo destruct.
os.set_stream(nullptr);
}
void CLIPredict(const CLIParam& param) {
// load data
std::unique_ptr<DMatrix> dtest(
DMatrix::Load(param.test_path, param.silent != 0, param.dsplit == 2));
// load model
CHECK_NE(param.model_in, "NULL")
<< "Must specifiy model_in for dump";
std::unique_ptr<Learner> learner(Learner::Create({}));
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
if (param.silent == 0) {
LOG(INFO) << "start prediction...";
}
std::vector<float> preds;
learner->Predict(dtest.get(), param.pred_margin, &preds, param.ntree_limit);
if (param.silent == 0) {
LOG(INFO) << "writing prediction to " << param.name_pred;
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(param.name_pred.c_str(), "w"));
dmlc::ostream os(fo.get());
for (float p : preds) {
os << p << '\n';
}
// force flush before fo destruct.
os.set_stream(nullptr);
}
int CLIRunTask(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: <config>\n");
return 0;
}
std::vector<std::pair<std::string, std::string> > cfg;
cfg.push_back(std::make_pair("seed", "0"));
common::ConfigIterator itr(argv[1]);
while (itr.Next()) {
cfg.push_back(std::make_pair(std::string(itr.name()), std::string(itr.val())));
}
for (int i = 2; i < argc; ++i) {
char name[256], val[256];
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2) {
cfg.push_back(std::make_pair(std::string(name), std::string(val)));
}
}
CLIParam param;
param.Configure(cfg);
rabit::Init(argc, argv);
switch (param.task) {
case kTrain: CLITrain(param); break;
case kDump2Text: CLIDump2Text(param); break;
case kPredict: CLIPredict(param); break;
}
rabit::Finalize();
return 0;
}
} // namespace xgboost
int main(int argc, char *argv[]) {
return xgboost::CLIRunTask(argc, argv);
}