Remove gpu_exact tree method (#4742)

This commit is contained in:
Rong Ou 2019-08-06 16:43:20 -07:00 committed by Rory Mitchell
parent 2a4df8e29f
commit 851b5b3808
16 changed files with 36 additions and 971 deletions

1
.gitignore vendored
View File

@ -90,7 +90,6 @@ lib/
# spark # spark
metastore_db metastore_db
plugin/updater_gpu/test/cpp/data
/include/xgboost/build_config.h /include/xgboost/build_config.h
# files from R-package source install # files from R-package source install

View File

@ -30,7 +30,7 @@ wl <- list(train = dtrain, test = dtest)
# - similar to the 'hist' # - similar to the 'hist'
# - the fastest option for moderately large datasets # - the fastest option for moderately large datasets
# - current limitations: max_depth < 16, does not implement guided loss # - current limitations: max_depth < 16, does not implement guided loss
# You can use tree_method = 'gpu_exact' for another GPU accelerated algorithm, # You can use tree_method = 'gpu_hist' for another GPU accelerated algorithm,
# which is slower, more memory-hungry, but does not use binning. # which is slower, more memory-hungry, but does not use binning.
param <- list(objective = 'reg:logistic', eval_metric = 'auc', subsample = 0.5, nthread = 4, param <- list(objective = 'reg:logistic', eval_metric = 'auc', subsample = 0.5, nthread = 4,
max_bin = 64, tree_method = 'gpu_hist') max_bin = 64, tree_method = 'gpu_hist')

View File

@ -13,7 +13,7 @@ Installation Guide
# * xgboost-{version}-py2.py3-none-win_amd64.whl # * xgboost-{version}-py2.py3-none-win_amd64.whl
pip3 install xgboost pip3 install xgboost
* The binary wheel will support GPU algorithms (`gpu_exact`, `gpu_hist`) on machines with NVIDIA GPUs. Please note that **training with multiple GPUs is only supported for Linux platform**. See :doc:`gpu/index`. * The binary wheel will support GPU algorithms (`gpu_hist`) on machines with NVIDIA GPUs. Please note that **training with multiple GPUs is only supported for Linux platform**. See :doc:`gpu/index`.
* Currently, we provide binary wheels for 64-bit Linux and Windows. * Currently, we provide binary wheels for 64-bit Linux and Windows.
**************************** ****************************

View File

@ -26,8 +26,6 @@ Algorithms
+-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tree_method | Description | | tree_method | Description |
+=======================+=======================================================================================================================================================================+ +=======================+=======================================================================================================================================================================+
| gpu_exact (deprecated)| The standard XGBoost tree construction algorithm. Performs exact search for splits. Slower and uses considerably more memory than ``gpu_hist``. |
+-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: Will run very slowly on GPUs older than Pascal architecture. | | gpu_hist | Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory. NOTE: Will run very slowly on GPUs older than Pascal architecture. |
+-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +-----------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
@ -37,31 +35,31 @@ Supported parameters
.. |tick| unicode:: U+2714 .. |tick| unicode:: U+2714
.. |cross| unicode:: U+2718 .. |cross| unicode:: U+2718
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| parameter | ``gpu_exact`` (deprecated) | ``gpu_hist`` | | parameter | ``gpu_hist`` |
+================================+============================+==============+ +================================+==============+
| ``subsample`` | |cross| | |tick| | | ``subsample`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``colsample_bytree`` | |cross| | |tick| | | ``colsample_bytree`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``colsample_bylevel`` | |cross| | |tick| | | ``colsample_bylevel`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``max_bin`` | |cross| | |tick| | | ``max_bin`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``gpu_id`` | |tick| | |tick| | | ``gpu_id`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``n_gpus`` (deprecated) | |cross| | |tick| | | ``n_gpus`` (deprecated) | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``predictor`` | |tick| | |tick| | | ``predictor`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``grow_policy`` | |cross| | |tick| | | ``grow_policy`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``monotone_constraints`` | |cross| | |tick| | | ``monotone_constraints`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``interaction_constraints`` | |cross| | |tick| | | ``interaction_constraints`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
| ``single_precision_histogram`` | |cross| | |tick| | | ``single_precision_histogram`` | |tick| |
+--------------------------------+----------------------------+--------------+ +--------------------------------+--------------+
GPU accelerated prediction is enabled by default for the above mentioned ``tree_method`` parameters but can be switched to CPU prediction by setting ``predictor`` to ``cpu_predictor``. This could be useful if you want to conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting ``predictor`` to ``gpu_predictor``. GPU accelerated prediction is enabled by default for the above mentioned ``tree_method`` parameters but can be switched to CPU prediction by setting ``predictor`` to ``cpu_predictor``. This could be useful if you want to conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting ``predictor`` to ``gpu_predictor``.
@ -194,12 +192,10 @@ Training time time on 1,000,000 rows x 50 columns with 500 boosting iterations a
+--------------+----------+ +--------------+----------+
| hist | 63.55 | | hist | 63.55 |
+--------------+----------+ +--------------+----------+
| gpu_exact | 161.08 |
+--------------+----------+
| exact | 1082.20 | | exact | 1082.20 |
+--------------+----------+ +--------------+----------+
See `GPU Accelerated XGBoost <https://xgboost.ai/2016/12/14/GPU-accelerated-xgboost.html>`_ and `Updates to the XGBoost GPU algorithms <https://xgboost.ai/2018/07/04/gpu-xgboost-update.html>`_ for additional performance benchmarks of the ``gpu_exact`` and ``gpu_hist`` tree methods. See `GPU Accelerated XGBoost <https://xgboost.ai/2016/12/14/GPU-accelerated-xgboost.html>`_ and `Updates to the XGBoost GPU algorithms <https://xgboost.ai/2018/07/04/gpu-xgboost-update.html>`_ for additional performance benchmarks of the ``gpu_hist`` tree method.
Developer notes Developer notes
=============== ===============

View File

@ -184,7 +184,7 @@ Parameters for Tree Booster
- The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU. - The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.
- ``cpu_predictor``: Multicore CPU prediction algorithm. - ``cpu_predictor``: Multicore CPU prediction algorithm.
- ``gpu_predictor``: Prediction using GPU. Default when ``tree_method`` is ``gpu_exact`` or ``gpu_hist``. - ``gpu_predictor``: Prediction using GPU. Default when ``tree_method`` is ``gpu_hist``.
* ``num_parallel_tree``, [default=1] * ``num_parallel_tree``, [default=1]
- Number of parallel trees constructed during each iteration. This option is used to support boosted random forest. - Number of parallel trees constructed during each iteration. This option is used to support boosted random forest.

View File

@ -15,7 +15,7 @@ path to a cache file that XGBoost will use for external memory cache.
.. note:: External memory is not available with GPU algorithms .. note:: External memory is not available with GPU algorithms
External memory is not available when ``tree_method`` is set to ``gpu_exact`` or ``gpu_hist``. External memory is not available when ``tree_method`` is set to ``gpu_hist``.
The following code was extracted from `demo/guide-python/external_memory.py <https://github.com/dmlc/xgboost/blob/master/demo/guide-python/external_memory.py>`_: The following code was extracted from `demo/guide-python/external_memory.py <https://github.com/dmlc/xgboost/blob/master/demo/guide-python/external_memory.py>`_:

View File

@ -75,9 +75,3 @@ CUB_PATH ?= cub
# you can also add your own plugin like this # you can also add your own plugin like this
# #
# XGB_PLUGINS += plugin/example/plugin.mk # XGB_PLUGINS += plugin/example/plugin.mk
# plugin to build tree on GPUs using CUDA
PLUGIN_UPDATER_GPU ?= OFF
ifeq ($(PLUGIN_UPDATER_GPU),ON)
XGB_PLUGINS += plugin/updater_gpu/plugin.mk
endif

View File

@ -146,13 +146,6 @@ void GBTree::ConfigureUpdaters(const std::map<std::string, std::string>& cfg) {
"single updater grow_quantile_histmaker."; "single updater grow_quantile_histmaker.";
tparam_.updater_seq = "grow_quantile_histmaker"; tparam_.updater_seq = "grow_quantile_histmaker";
break; break;
case TreeMethod::kGPUExact:
this->AssertGPUSupport();
tparam_.updater_seq = "grow_gpu,prune";
if (cfg.find("predictor") == cfg.cend()) {
tparam_.predictor = "gpu_predictor";
}
break;
case TreeMethod::kGPUHist: case TreeMethod::kGPUHist:
this->AssertGPUSupport(); this->AssertGPUSupport();
tparam_.updater_seq = "grow_gpu_hist"; tparam_.updater_seq = "grow_gpu_hist";

View File

@ -30,7 +30,7 @@
namespace xgboost { namespace xgboost {
enum class TreeMethod : int { enum class TreeMethod : int {
kAuto = 0, kApprox = 1, kExact = 2, kHist = 3, kAuto = 0, kApprox = 1, kExact = 2, kHist = 3,
kGPUExact = 4, kGPUHist = 5 kGPUHist = 5
}; };
// boosting process types // boosting process types
@ -88,7 +88,6 @@ struct GBTreeTrainParam : public dmlc::Parameter<GBTreeTrainParam> {
.add_enum("approx", TreeMethod::kApprox) .add_enum("approx", TreeMethod::kApprox)
.add_enum("exact", TreeMethod::kExact) .add_enum("exact", TreeMethod::kExact)
.add_enum("hist", TreeMethod::kHist) .add_enum("hist", TreeMethod::kHist)
.add_enum("gpu_exact", TreeMethod::kGPUExact)
.add_enum("gpu_hist", TreeMethod::kGPUHist) .add_enum("gpu_hist", TreeMethod::kGPUHist)
.describe("Choice of tree construction method."); .describe("Choice of tree construction method.");
} }
@ -171,8 +170,7 @@ class GBTree : public GradientBooster {
bool UseGPU() const override { bool UseGPU() const override {
return return
tparam_.predictor == "gpu_predictor" || tparam_.predictor == "gpu_predictor" ||
tparam_.tree_method == TreeMethod::kGPUHist || tparam_.tree_method == TreeMethod::kGPUHist;
tparam_.tree_method == TreeMethod::kGPUExact;
} }
void Load(dmlc::Stream* fi) override { void Load(dmlc::Stream* fi) override {

View File

@ -37,7 +37,6 @@ DMLC_REGISTRY_LINK_TAG(updater_quantile_hist);
DMLC_REGISTRY_LINK_TAG(updater_histmaker); DMLC_REGISTRY_LINK_TAG(updater_histmaker);
DMLC_REGISTRY_LINK_TAG(updater_sync); DMLC_REGISTRY_LINK_TAG(updater_sync);
#ifdef XGBOOST_USE_CUDA #ifdef XGBOOST_USE_CUDA
DMLC_REGISTRY_LINK_TAG(updater_gpu);
DMLC_REGISTRY_LINK_TAG(updater_gpu_hist); DMLC_REGISTRY_LINK_TAG(updater_gpu_hist);
#endif // XGBOOST_USE_CUDA #endif // XGBOOST_USE_CUDA
} // namespace tree } // namespace tree

View File

@ -1,844 +0,0 @@
/*!
* Copyright 2017-2018 XGBoost contributors
*/
#include <xgboost/tree_updater.h>
#include <utility>
#include <vector>
#include <limits>
#include <string>
#include "../common/common.h"
#include "param.h"
#include "updater_gpu_common.cuh"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_gpu);
template <typename GradientPairT>
XGBOOST_DEVICE float inline LossChangeMissing(const GradientPairT& scan,
const GradientPairT& missing,
const GradientPairT& parent_sum,
const float& parent_gain,
const GPUTrainingParam& param,
bool& missing_left_out) { // NOLINT
// Put gradients of missing values to left
float missing_left_loss =
DeviceCalcLossChange(param, scan + missing, parent_sum, parent_gain);
float missing_right_loss =
DeviceCalcLossChange(param, scan, parent_sum, parent_gain);
if (missing_left_loss >= missing_right_loss) {
missing_left_out = true;
return missing_left_loss;
} else {
missing_left_out = false;
return missing_right_loss;
}
}
/**
* @brief Absolute BFS order IDs to col-wise unique IDs based on user input
* @param tid the index of the element that this thread should access
* @param abs the array of absolute IDs
* @param colIds the array of column IDs for each element
* @param nodeStart the start of the node ID at this level
* @param nKeys number of nodes at this level.
* @return the uniq key
*/
static HOST_DEV_INLINE NodeIdT Abs2UniqueKey(int tid,
common::Span<const NodeIdT> abs,
common::Span<const int> colIds,
NodeIdT nodeStart, int nKeys) {
int a = abs[tid];
if (a == kUnusedNode) return a;
return ((a - nodeStart) + (colIds[tid] * nKeys));
}
/**
* @struct Pair
* @brief Pair used for key basd scan operations on GradientPair
*/
struct Pair {
int key;
GradientPair value;
};
/** define a key that's not used at all in the entire boosting process */
static const int kNoneKey = -100;
/**
* @brief Allocate temporary buffers needed for scan operations
* @param tmpScans gradient buffer
* @param tmpKeys keys buffer
* @param size number of elements that will be scanned
*/
template <int BLKDIM_L1L3 = 256>
int ScanTempBufferSize(int size) {
int num_blocks = common::DivRoundUp(size, BLKDIM_L1L3);
return num_blocks;
}
struct AddByKey {
template <typename T>
HOST_DEV_INLINE T operator()(const T& first, const T& second) const {
T result;
if (first.key == second.key) {
result.key = first.key;
result.value = first.value + second.value;
} else {
result.key = second.key;
result.value = second.value;
}
return result;
}
};
/**
* @brief Gradient value getter function
* @param id the index into the vals or instIds array to which to fetch
* @param vals the gradient value buffer
* @param instIds instance index buffer
* @return the expected gradient value
*/
HOST_DEV_INLINE GradientPair Get(int id,
common::Span<const GradientPair> vals,
common::Span<const int> instIds) {
id = instIds[id];
return vals[id];
}
template <int BLKDIM_L1L3>
__global__ void CubScanByKeyL1(
common::Span<GradientPair> scans,
common::Span<const GradientPair> vals,
common::Span<const int> instIds,
common::Span<GradientPair> mScans,
common::Span<int> mKeys,
common::Span<const NodeIdT> keys,
int nUniqKeys,
common::Span<const int> colIds, NodeIdT nodeStart,
const int size) {
Pair rootPair = {kNoneKey, GradientPair(0.f, 0.f)};
int myKey;
GradientPair myValue;
using BlockScan = cub::BlockScan<Pair, BLKDIM_L1L3>;
__shared__ typename BlockScan::TempStorage temp_storage;
Pair threadData;
int tid = blockIdx.x * BLKDIM_L1L3 + threadIdx.x;
if (tid < size) {
myKey = Abs2UniqueKey(tid, keys, colIds, nodeStart, nUniqKeys);
myValue = Get(tid, vals, instIds);
} else {
myKey = kNoneKey;
myValue = {};
}
threadData.key = myKey;
threadData.value = myValue;
// get previous key, especially needed for the last thread in this block
// in order to pass on the partial scan values.
// this statement MUST appear before the checks below!
// else, the result of this shuffle operation will be undefined
#if (__CUDACC_VER_MAJOR__ >= 9)
int previousKey = __shfl_up_sync(0xFFFFFFFF, myKey, 1);
#else
int previousKey = __shfl_up(myKey, 1);
#endif // (__CUDACC_VER_MAJOR__ >= 9)
// Collectively compute the block-wide exclusive prefix sum
BlockScan(temp_storage)
.ExclusiveScan(threadData, threadData, rootPair, AddByKey());
if (tid < size) {
scans[tid] = threadData.value;
} else {
return;
}
if (threadIdx.x == BLKDIM_L1L3 - 1) {
threadData.value =
(myKey == previousKey) ? threadData.value : GradientPair(0.0f, 0.0f);
mKeys[blockIdx.x] = myKey;
mScans[blockIdx.x] = threadData.value + myValue;
}
}
template <int BLKSIZE>
__global__ void CubScanByKeyL2(common::Span<GradientPair> mScans,
common::Span<int> mKeys, int mLength) {
using BlockScan = cub::BlockScan<Pair, BLKSIZE, cub::BLOCK_SCAN_WARP_SCANS>;
Pair threadData;
__shared__ typename BlockScan::TempStorage temp_storage;
for (int i = threadIdx.x; i < mLength; i += BLKSIZE - 1) {
threadData.key = mKeys[i];
threadData.value = mScans[i];
BlockScan(temp_storage).InclusiveScan(threadData, threadData, AddByKey());
mScans[i] = threadData.value;
__syncthreads();
}
}
template <int BLKDIM_L1L3>
__global__ void CubScanByKeyL3(common::Span<GradientPair> sums,
common::Span<GradientPair> scans,
common::Span<const GradientPair> vals,
common::Span<const int> instIds,
common::Span<const GradientPair> mScans,
common::Span<const int> mKeys,
common::Span<const NodeIdT> keys,
int nUniqKeys,
common::Span<const int> colIds, NodeIdT nodeStart,
const int size) {
int relId = threadIdx.x;
int tid = (blockIdx.x * BLKDIM_L1L3) + relId;
// to avoid the following warning from nvcc:
// __shared__ memory variable with non-empty constructor or destructor
// (potential race between threads)
__shared__ char gradBuff[sizeof(GradientPair)];
__shared__ int s_mKeys;
GradientPair* s_mScans = reinterpret_cast<GradientPair*>(gradBuff);
if (tid >= size) return;
// cache block-wide partial scan info
if (relId == 0) {
s_mKeys = (blockIdx.x > 0) ? mKeys[blockIdx.x - 1] : kNoneKey;
s_mScans[0] = (blockIdx.x > 0) ? mScans[blockIdx.x - 1] : GradientPair();
}
int myKey = Abs2UniqueKey(tid, keys, colIds, nodeStart, nUniqKeys);
int previousKey =
tid == 0 ? kNoneKey
: Abs2UniqueKey(tid - 1, keys, colIds, nodeStart, nUniqKeys);
GradientPair my_value = scans[tid];
__syncthreads();
if (blockIdx.x > 0 && s_mKeys == previousKey) {
my_value += s_mScans[0];
}
if (tid == size - 1) {
sums[previousKey] = my_value + Get(tid, vals, instIds);
}
if ((previousKey != myKey) && (previousKey >= 0)) {
sums[previousKey] = my_value;
my_value = GradientPair(0.0f, 0.0f);
}
scans[tid] = my_value;
}
/**
* @brief Performs fused reduce and scan by key functionality. It is assumed
* that
* the keys occur contiguously!
* @param sums the output gradient reductions for each element performed
* key-wise
* @param scans the output gradient scans for each element performed key-wise
* @param vals the gradients evaluated for each observation.
* @param instIds instance ids for each element
* @param keys keys to be used to segment the reductions. They need not occur
* contiguously in contrast to scan_by_key. Currently, we need one key per
* value in the 'vals' array.
* @param size number of elements in the 'vals' array
* @param nUniqKeys max number of uniq keys found per column
* @param nCols number of columns
* @param tmpScans temporary scan buffer needed for cub-pyramid algo
* @param tmpKeys temporary key buffer needed for cub-pyramid algo
* @param colIds column indices for each element in the array
* @param nodeStart index of the leftmost node in the current level
*/
template <int BLKDIM_L1L3 = 256, int BLKDIM_L2 = 512>
void ReduceScanByKey(common::Span<GradientPair> sums,
common::Span<GradientPair> scans,
common::Span<GradientPair> vals,
common::Span<const int> instIds,
common::Span<const NodeIdT> keys,
int size, int nUniqKeys, int nCols,
common::Span<GradientPair> tmpScans,
common::Span<int> tmpKeys,
common::Span<const int> colIds, NodeIdT nodeStart) {
int nBlks = common::DivRoundUp(size, BLKDIM_L1L3);
cudaMemset(sums.data(), 0, nUniqKeys * nCols * sizeof(GradientPair));
CubScanByKeyL1<BLKDIM_L1L3>
<<<nBlks, BLKDIM_L1L3>>>(scans, vals, instIds, tmpScans, tmpKeys, keys,
nUniqKeys, colIds, nodeStart, size);
CubScanByKeyL2<BLKDIM_L2><<<1, BLKDIM_L2>>>(tmpScans, tmpKeys, nBlks);
CubScanByKeyL3<BLKDIM_L1L3>
<<<nBlks, BLKDIM_L1L3>>>(sums, scans, vals, instIds, tmpScans, tmpKeys,
keys, nUniqKeys, colIds, nodeStart, size);
}
/**
* @struct ExactSplitCandidate
* @brief Abstraction of a possible split in the decision tree
*/
struct ExactSplitCandidate {
/** the optimal gain score for this node */
float score;
/** index where to split in the DMatrix */
int index;
HOST_DEV_INLINE ExactSplitCandidate() : score{-FLT_MAX}, index{INT_MAX} {}
/**
* @brief Whether the split info is valid to be used to create a new child
* @param minSplitLoss minimum score above which decision to split is made
* @return true if splittable, else false
*/
HOST_DEV_INLINE bool IsSplittable(float minSplitLoss) const {
return ((score >= minSplitLoss) && (index != INT_MAX));
}
};
/**
* @enum ArgMaxByKeyAlgo best_split_evaluation.cuh
* @brief Help decide which algorithm to use for multi-argmax operation
*/
enum ArgMaxByKeyAlgo {
/** simplest, use gmem-atomics for all updates */
kAbkGmem = 0,
/** use smem-atomics for updates (when number of keys are less) */
kAbkSmem
};
/** max depth until which to use shared mem based atomics for argmax */
static const int kMaxAbkLevels = 3;
HOST_DEV_INLINE ExactSplitCandidate MaxSplit(ExactSplitCandidate a,
ExactSplitCandidate b) {
ExactSplitCandidate out;
if (a.score < b.score) {
out.score = b.score;
out.index = b.index;
} else if (a.score == b.score) {
out.score = a.score;
out.index = (a.index < b.index) ? a.index : b.index;
} else {
out.score = a.score;
out.index = a.index;
}
return out;
}
DEV_INLINE void AtomicArgMax(ExactSplitCandidate* address,
ExactSplitCandidate val) {
unsigned long long* intAddress = reinterpret_cast<unsigned long long*>(address); // NOLINT
unsigned long long old = *intAddress; // NOLINT
unsigned long long assumed = old; // NOLINT
do {
assumed = old;
ExactSplitCandidate res =
MaxSplit(val, *reinterpret_cast<ExactSplitCandidate*>(&assumed));
old = atomicCAS(intAddress, assumed, *reinterpret_cast<uint64_t*>(&res));
} while (assumed != old);
}
DEV_INLINE void ArgMaxWithAtomics(
int id,
common::Span<ExactSplitCandidate> nodeSplits,
common::Span<const GradientPair> gradScans,
common::Span<const GradientPair> gradSums,
common::Span<const float> vals,
common::Span<const int> colIds,
common::Span<const NodeIdT> nodeAssigns,
common::Span<const DeviceNodeStats> nodes, int nUniqKeys,
NodeIdT nodeStart, int len,
const GPUTrainingParam& param) {
int nodeId = nodeAssigns[id];
// @todo: this is really a bad check! but will be fixed when we move
// to key-based reduction
if ((id == 0) ||
!((nodeId == nodeAssigns[id - 1]) && (colIds[id] == colIds[id - 1]) &&
(vals[id] == vals[id - 1]))) {
if (nodeId != kUnusedNode) {
int sumId = Abs2UniqueKey(id, nodeAssigns, colIds, nodeStart, nUniqKeys);
GradientPair colSum = gradSums[sumId];
int uid = nodeId - nodeStart;
DeviceNodeStats node_stat = nodes[nodeId];
GradientPair parentSum = node_stat.sum_gradients;
float parentGain = node_stat.root_gain;
bool tmp;
ExactSplitCandidate s;
GradientPair missing = parentSum - colSum;
s.score = LossChangeMissing(gradScans[id], missing, parentSum, parentGain,
param, tmp);
s.index = id;
AtomicArgMax(&nodeSplits[uid], s);
} // end if nodeId != UNUSED_NODE
} // end if id == 0 ...
}
__global__ void AtomicArgMaxByKeyGmem(
common::Span<ExactSplitCandidate> nodeSplits,
common::Span<const GradientPair> gradScans,
common::Span<const GradientPair> gradSums,
common::Span<const float> vals,
common::Span<const int> colIds,
common::Span<const NodeIdT> nodeAssigns,
common::Span<const DeviceNodeStats> nodes,
int nUniqKeys,
NodeIdT nodeStart,
int len,
const TrainParam param) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < len; id += stride) {
ArgMaxWithAtomics(id, nodeSplits, gradScans, gradSums, vals, colIds,
nodeAssigns, nodes, nUniqKeys, nodeStart, len,
GPUTrainingParam(param));
}
}
__global__ void AtomicArgMaxByKeySmem(
common::Span<ExactSplitCandidate> nodeSplits,
common::Span<const GradientPair> gradScans,
common::Span<const GradientPair> gradSums,
common::Span<const float> vals,
common::Span<const int> colIds,
common::Span<const NodeIdT> nodeAssigns,
common::Span<const DeviceNodeStats> nodes,
int nUniqKeys, NodeIdT nodeStart, int len, const GPUTrainingParam param) {
extern __shared__ char sArr[];
common::Span<ExactSplitCandidate> sNodeSplits =
common::Span<ExactSplitCandidate>(
reinterpret_cast<ExactSplitCandidate*>(sArr),
static_cast<typename common::Span<ExactSplitCandidate>::index_type>(
nUniqKeys * sizeof(ExactSplitCandidate)));
int tid = threadIdx.x;
ExactSplitCandidate defVal;
for (int i = tid; i < nUniqKeys; i += blockDim.x) {
sNodeSplits[i] = defVal;
}
__syncthreads();
int id = tid + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < len; id += stride) {
ArgMaxWithAtomics(id, sNodeSplits, gradScans, gradSums, vals, colIds,
nodeAssigns, nodes, nUniqKeys, nodeStart, len, param);
}
__syncthreads();
for (int i = tid; i < nUniqKeys; i += blockDim.x) {
ExactSplitCandidate s = sNodeSplits[i];
AtomicArgMax(&nodeSplits[i], s);
}
}
/**
* @brief Performs argmax_by_key functionality but for cases when keys need not
* occur contiguously
* @param nodeSplits will contain information on best split for each node
* @param gradScans exclusive sum on sorted segments for each col
* @param gradSums gradient sum for each column in DMatrix based on to node-ids
* @param vals feature values
* @param colIds column index for each element in the feature values array
* @param nodeAssigns node-id assignments to each element in DMatrix
* @param nodes pointer to all nodes for this tree in BFS order
* @param nUniqKeys number of unique node-ids in this level
* @param nodeStart start index of the node-ids in this level
* @param len number of elements
* @param param training parameters
* @param algo which algorithm to use for argmax_by_key
*/
template <int BLKDIM = 256, int ITEMS_PER_THREAD = 4>
void ArgMaxByKey(common::Span<ExactSplitCandidate> nodeSplits,
common::Span<const GradientPair> gradScans,
common::Span<const GradientPair> gradSums,
common::Span<const float> vals,
common::Span<const int> colIds,
common::Span<const NodeIdT> nodeAssigns,
common::Span<const DeviceNodeStats> nodes,
int nUniqKeys,
NodeIdT nodeStart, int len, const TrainParam param,
ArgMaxByKeyAlgo algo,
GPUSet const& devices) {
dh::FillConst<ExactSplitCandidate, BLKDIM, ITEMS_PER_THREAD>(
*(devices.begin()), nodeSplits.data(), nUniqKeys,
ExactSplitCandidate());
int nBlks = common::DivRoundUp(len, ITEMS_PER_THREAD * BLKDIM);
switch (algo) {
case kAbkGmem:
AtomicArgMaxByKeyGmem<<<nBlks, BLKDIM>>>(
nodeSplits, gradScans, gradSums, vals, colIds, nodeAssigns, nodes,
nUniqKeys, nodeStart, len, param);
break;
case kAbkSmem:
AtomicArgMaxByKeySmem<<<nBlks, BLKDIM,
sizeof(ExactSplitCandidate) * nUniqKeys>>>(
nodeSplits, gradScans, gradSums, vals, colIds, nodeAssigns, nodes,
nUniqKeys, nodeStart, len, GPUTrainingParam(param));
break;
default:
throw std::runtime_error("argMaxByKey: Bad algo passed!");
}
}
__global__ void AssignColIds(int* colIds, const int* colOffsets) {
int myId = blockIdx.x;
int start = colOffsets[myId];
int end = colOffsets[myId + 1];
for (int id = start + threadIdx.x; id < end; id += blockDim.x) {
colIds[id] = myId;
}
}
__global__ void FillDefaultNodeIds(NodeIdT* nodeIdsPerInst,
const DeviceNodeStats* nodes, int n_rows) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
if (id >= n_rows) {
return;
}
// if this element belongs to none of the currently active node-id's
NodeIdT nId = nodeIdsPerInst[id];
if (nId == kUnusedNode) {
return;
}
const DeviceNodeStats n = nodes[nId];
NodeIdT result;
if (n.IsLeaf() || n.IsUnused()) {
result = kUnusedNode;
} else if (n.dir == kLeftDir) {
result = (2 * n.idx) + 1;
} else {
result = (2 * n.idx) + 2;
}
nodeIdsPerInst[id] = result;
}
__global__ void AssignNodeIds(NodeIdT* nodeIdsPerInst, int* nodeLocations,
const NodeIdT* nodeIds, const int* instId,
const DeviceNodeStats* nodes,
const int* colOffsets, const float* vals,
int nVals, int nCols) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < nVals; id += stride) {
// fusing generation of indices for node locations
nodeLocations[id] = id;
// using nodeIds here since the previous kernel would have updated
// the nodeIdsPerInst with all default assignments
int nId = nodeIds[id];
// if this element belongs to none of the currently active node-id's
if (nId != kUnusedNode) {
const DeviceNodeStats n = nodes[nId];
int colId = n.fidx;
// printf("nid=%d colId=%d id=%d\n", nId, colId, id);
int start = colOffsets[colId];
int end = colOffsets[colId + 1];
// @todo: too much wasteful threads!!
if ((id >= start) && (id < end) && !(n.IsLeaf() || n.IsUnused())) {
NodeIdT result = (2 * n.idx) + 1 + (vals[id] >= n.fvalue);
nodeIdsPerInst[instId[id]] = result;
}
}
}
}
__global__ void MarkLeavesKernel(DeviceNodeStats* nodes, int len) {
int id = (blockIdx.x * blockDim.x) + threadIdx.x;
if ((id < len) && !nodes[id].IsUnused()) {
int lid = (id << 1) + 1;
int rid = (id << 1) + 2;
if ((lid >= len) || (rid >= len)) {
nodes[id].root_gain = -FLT_MAX; // bottom-most nodes
} else if (nodes[lid].IsUnused() && nodes[rid].IsUnused()) {
nodes[id].root_gain = -FLT_MAX; // unused child nodes
}
}
}
class GPUMaker : public TreeUpdater {
protected:
TrainParam param_;
/** whether we have initialized memory already (so as not to repeat!) */
bool allocated_;
/** feature values stored in column-major compressed format */
dh::DoubleBuffer<float> vals_;
common::Span<float> vals_cached_;
/** corresponding instance id's of these featutre values */
dh::DoubleBuffer<int> instIds_;
common::Span<int> inst_ids_cached_;
/** column offsets for these feature values */
common::Span<int> colOffsets_;
common::Span<GradientPair> gradsInst_;
dh::DoubleBuffer<NodeIdT> nodeAssigns_;
dh::DoubleBuffer<int> nodeLocations_;
common::Span<DeviceNodeStats> nodes_;
common::Span<NodeIdT> node_assigns_per_inst_;
common::Span<GradientPair> gradsums_;
common::Span<GradientPair> gradscans_;
common::Span<ExactSplitCandidate> nodeSplits_;
int n_vals_;
int n_rows_;
int n_cols_;
int maxNodes_;
int maxLeaves_;
// devices are only used for sharding the HostDeviceVector passed as a parameter;
// the algorithm works with a single GPU only
GPUSet devices_;
dh::CubMemory tmp_mem_;
common::Span<GradientPair> tmpScanGradBuff_;
common::Span<int> tmp_scan_key_buff_;
common::Span<int> colIds_;
dh::BulkAllocator ba_;
public:
GPUMaker() : allocated_{false} {}
~GPUMaker() override = default;
char const* Name() const override {
return "gpu_exact";
}
void Configure(const Args &args) override {
param_.InitAllowUnknown(args);
maxNodes_ = (1 << (param_.max_depth + 1)) - 1;
maxLeaves_ = 1 << param_.max_depth;
devices_ = GPUSet::All(tparam_->gpu_id, tparam_->n_gpus);
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const std::vector<RegTree*>& trees) override {
// rescale learning rate according to size of trees
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
gpair->Shard(devices_);
try {
// build tree
for (auto tree : trees) {
UpdateTree(gpair, dmat, tree);
}
} catch (const std::exception& e) {
LOG(FATAL) << "grow_gpu exception: " << e.what() << std::endl;
}
param_.learning_rate = lr;
}
/// @note: Update should be only after Init!!
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
RegTree* hTree) {
if (!allocated_) {
SetupOneTimeData(dmat);
}
for (int i = 0; i < param_.max_depth; ++i) {
if (i == 0) {
// make sure to start on a fresh tree with sorted values!
dh::CopyDeviceSpan(vals_.CurrentSpan(), vals_cached_);
dh::CopyDeviceSpan(instIds_.CurrentSpan(), inst_ids_cached_);
TransferGrads(gpair);
}
int nNodes = 1 << i;
NodeIdT nodeStart = nNodes - 1;
InitNodeData(i, nodeStart, nNodes);
FindSplit(i, nodeStart, nNodes);
}
// mark all the used nodes with unused children as leaf nodes
MarkLeaves();
Dense2SparseTree(hTree, nodes_, param_);
}
void Split2Node(int nNodes, NodeIdT nodeStart) {
auto d_nodes = nodes_;
auto d_gradScans = gradscans_;
auto d_gradsums = gradsums_;
auto d_nodeAssigns = nodeAssigns_.CurrentSpan();
auto d_colIds = colIds_;
auto d_vals = vals_.Current();
auto d_nodeSplits = nodeSplits_.data();
int nUniqKeys = nNodes;
float min_split_loss = param_.min_split_loss;
auto gpu_param = GPUTrainingParam(param_);
dh::LaunchN(*(devices_.begin()), nNodes, [=] __device__(int uid) {
int absNodeId = uid + nodeStart;
ExactSplitCandidate s = d_nodeSplits[uid];
if (s.IsSplittable(min_split_loss)) {
int idx = s.index;
int nodeInstId =
Abs2UniqueKey(idx, d_nodeAssigns, d_colIds, nodeStart, nUniqKeys);
bool missingLeft = true;
const DeviceNodeStats& n = d_nodes[absNodeId];
GradientPair gradScan = d_gradScans[idx];
GradientPair gradSum = d_gradsums[nodeInstId];
float thresh = d_vals[idx];
int colId = d_colIds[idx];
// get the default direction for the current node
GradientPair missing = n.sum_gradients - gradSum;
LossChangeMissing(gradScan, missing, n.sum_gradients, n.root_gain,
gpu_param, missingLeft);
// get the score/weight/id/gradSum for left and right child nodes
GradientPair lGradSum = missingLeft ? gradScan + missing : gradScan;
GradientPair rGradSum = n.sum_gradients - lGradSum;
// Create children
d_nodes[LeftChildNodeIdx(absNodeId)] =
DeviceNodeStats(lGradSum, LeftChildNodeIdx(absNodeId), gpu_param);
d_nodes[RightChildNodeIdx(absNodeId)] =
DeviceNodeStats(rGradSum, RightChildNodeIdx(absNodeId), gpu_param);
// Set split for parent
d_nodes[absNodeId].SetSplit(thresh, colId,
missingLeft ? kLeftDir : kRightDir, lGradSum,
rGradSum);
} else {
// cannot be split further, so this node is a leaf!
d_nodes[absNodeId].root_gain = -FLT_MAX;
}
});
}
void FindSplit(int level, NodeIdT nodeStart, int nNodes) {
ReduceScanByKey(gradsums_, gradscans_, gradsInst_,
instIds_.CurrentSpan(), nodeAssigns_.CurrentSpan(), n_vals_, nNodes,
n_cols_, tmpScanGradBuff_, tmp_scan_key_buff_,
colIds_, nodeStart);
auto devices = GPUSet::All(tparam_->gpu_id, tparam_->n_gpus);
ArgMaxByKey(nodeSplits_, gradscans_, gradsums_,
vals_.CurrentSpan(), colIds_, nodeAssigns_.CurrentSpan(),
nodes_, nNodes, nodeStart, n_vals_, param_,
level <= kMaxAbkLevels ? kAbkSmem : kAbkGmem,
devices);
Split2Node(nNodes, nodeStart);
}
void AllocateAllData(int offsetSize) {
int tmpBuffSize = ScanTempBufferSize(n_vals_);
ba_.Allocate(*(devices_.begin()), &vals_, n_vals_,
&vals_cached_, n_vals_, &instIds_, n_vals_, &inst_ids_cached_, n_vals_,
&colOffsets_, offsetSize, &gradsInst_, n_rows_, &nodeAssigns_, n_vals_,
&nodeLocations_, n_vals_, &nodes_, maxNodes_, &node_assigns_per_inst_,
n_rows_, &gradsums_, maxLeaves_ * n_cols_, &gradscans_, n_vals_,
&nodeSplits_, maxLeaves_, &tmpScanGradBuff_, tmpBuffSize,
&tmp_scan_key_buff_, tmpBuffSize, &colIds_, n_vals_);
}
void SetupOneTimeData(DMatrix* dmat) {
if (!dmat->SingleColBlock()) {
LOG(FATAL) << "exact::GPUBuilder - must have 1 column block";
}
std::vector<float> fval;
std::vector<int> fId;
std::vector<int> offset;
ConvertToCsc(dmat, &fval, &fId, &offset);
AllocateAllData(static_cast<int>(offset.size()));
TransferAndSortData(fval, fId, offset);
allocated_ = true;
}
void ConvertToCsc(DMatrix* dmat, std::vector<float>* fval,
std::vector<int>* fId, std::vector<int>* offset) {
const MetaInfo& info = dmat->Info();
CHECK(info.num_col_ < std::numeric_limits<int>::max());
CHECK(info.num_row_ < std::numeric_limits<int>::max());
n_rows_ = static_cast<int>(info.num_row_);
n_cols_ = static_cast<int>(info.num_col_);
offset->reserve(n_cols_ + 1);
offset->push_back(0);
fval->reserve(n_cols_ * n_rows_);
fId->reserve(n_cols_ * n_rows_);
// in case you end up with a DMatrix having no column access
// then make sure to enable that before copying the data!
for (const auto& batch : dmat->GetBatches<SortedCSCPage>()) {
for (int i = 0; i < batch.Size(); i++) {
auto col = batch[i];
for (const Entry& e : col) {
int inst_id = static_cast<int>(e.index);
fval->push_back(e.fvalue);
fId->push_back(inst_id);
}
offset->push_back(static_cast<int>(fval->size()));
}
}
CHECK(fval->size() < std::numeric_limits<int>::max());
n_vals_ = static_cast<int>(fval->size());
}
void TransferAndSortData(const std::vector<float>& fval,
const std::vector<int>& fId,
const std::vector<int>& offset) {
dh::CopyVectorToDeviceSpan(vals_.CurrentSpan(), fval);
dh::CopyVectorToDeviceSpan(instIds_.CurrentSpan(), fId);
dh::CopyVectorToDeviceSpan(colOffsets_, offset);
dh::SegmentedSort<float, int>(&tmp_mem_, &vals_, &instIds_, n_vals_, n_cols_,
colOffsets_);
dh::CopyDeviceSpan(vals_cached_, vals_.CurrentSpan());
dh::CopyDeviceSpan(inst_ids_cached_, instIds_.CurrentSpan());
AssignColIds<<<n_cols_, 512>>>(colIds_.data(), colOffsets_.data());
}
void TransferGrads(HostDeviceVector<GradientPair>* gpair) {
gpair->GatherTo(
thrust::device_pointer_cast(gradsInst_.data()),
thrust::device_pointer_cast(gradsInst_.data() + gradsInst_.size()));
// evaluate the full-grad reduction for the root node
dh::SumReduction<GradientPair>(tmp_mem_, gradsInst_, gradsums_, n_rows_);
}
void InitNodeData(int level, NodeIdT nodeStart, int nNodes) {
// all instances belong to root node at the beginning!
if (level == 0) {
thrust::fill(thrust::device_pointer_cast(nodes_.data()),
thrust::device_pointer_cast(nodes_.data() + nodes_.size()),
DeviceNodeStats());
thrust::fill(thrust::device_pointer_cast(nodeAssigns_.Current()),
thrust::device_pointer_cast(nodeAssigns_.Current() +
nodeAssigns_.Size()),
0);
thrust::fill(thrust::device_pointer_cast(node_assigns_per_inst_.data()),
thrust::device_pointer_cast(node_assigns_per_inst_.data() +
node_assigns_per_inst_.size()),
0);
// for root node, just update the gradient/score/weight/id info
// before splitting it! Currently all data is on GPU, hence this
// stupid little kernel
auto d_nodes = nodes_;
auto d_sums = gradsums_;
auto gpu_params = GPUTrainingParam(param_);
dh::LaunchN(*(devices_.begin()), 1, [=] __device__(int idx) {
d_nodes[0] = DeviceNodeStats(d_sums[0], 0, gpu_params);
});
} else {
const int BlkDim = 256;
const int ItemsPerThread = 4;
// assign default node ids first
int nBlks = common::DivRoundUp(n_rows_, BlkDim);
FillDefaultNodeIds<<<nBlks, BlkDim>>>(node_assigns_per_inst_.data(),
nodes_.data(), n_rows_);
// evaluate the correct child indices of non-missing values next
nBlks = common::DivRoundUp(n_vals_, BlkDim * ItemsPerThread);
AssignNodeIds<<<nBlks, BlkDim>>>(
node_assigns_per_inst_.data(), nodeLocations_.Current(),
nodeAssigns_.Current(), instIds_.Current(), nodes_.data(),
colOffsets_.data(), vals_.Current(), n_vals_, n_cols_);
// gather the node assignments across all other columns too
dh::Gather(*(devices_.begin()), nodeAssigns_.Current(),
node_assigns_per_inst_.data(), instIds_.Current(), n_vals_);
SortKeys(level);
}
}
void SortKeys(int level) {
// segmented-sort the arrays based on node-id's
// but we don't need more than level+1 bits for sorting!
SegmentedSort(&tmp_mem_, &nodeAssigns_, &nodeLocations_, n_vals_, n_cols_,
colOffsets_, 0, level + 1);
dh::Gather<float, int>(*(devices_.begin()), vals_.other(),
vals_.Current(), instIds_.other(), instIds_.Current(),
nodeLocations_.Current(), n_vals_);
vals_.buff.selector ^= 1;
instIds_.buff.selector ^= 1;
}
void MarkLeaves() {
const int BlkDim = 128;
int nBlks = common::DivRoundUp(maxNodes_, BlkDim);
MarkLeavesKernel<<<nBlks, BlkDim>>>(nodes_.data(), maxNodes_);
}
};
XGBOOST_REGISTER_TREE_UPDATER(GPUMaker, "grow_gpu")
.describe("Grow tree with GPU.")
.set_body([]() {
LOG(WARNING) << "The gpu_exact tree method is deprecated and may be "
"removed in a future version.";
return new GPUMaker();
});
} // namespace tree
} // namespace xgboost

View File

@ -36,10 +36,6 @@ TEST(GBTree, SelectTreeMethod) {
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker"); ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
#ifdef XGBOOST_USE_CUDA #ifdef XGBOOST_USE_CUDA
generic_param.InitAllowUnknown(std::vector<Arg>{Arg{"n_gpus", "1"}}); generic_param.InitAllowUnknown(std::vector<Arg>{Arg{"n_gpus", "1"}});
gbtree.ConfigureWithKnownData({Arg("tree_method", "gpu_exact"),
Arg("num_feature", n_feat)}, p_dmat);
ASSERT_EQ(tparam.updater_seq, "grow_gpu,prune");
ASSERT_EQ(tparam.predictor, "gpu_predictor");
gbtree.ConfigureWithKnownData({Arg("tree_method", "gpu_hist"), Arg("num_feature", n_feat)}, gbtree.ConfigureWithKnownData({Arg("tree_method", "gpu_hist"), Arg("num_feature", n_feat)},
p_dmat); p_dmat);
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist"); ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");

View File

@ -171,13 +171,6 @@ TEST(Learner, GPUConfiguration) {
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0); ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1); ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
} }
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "gpu_exact"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
}
{ {
std::unique_ptr<Learner> learner {Learner::Create(mat)}; std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "gpu_hist"}}); learner->SetParams({Arg{"tree_method", "gpu_hist"}});

View File

@ -1,49 +0,0 @@
#include <gtest/gtest.h>
#include <xgboost/tree_updater.h>
#include <vector>
#include <string>
#include <utility>
#include "../helpers.h"
namespace xgboost {
namespace tree {
TEST(GPUExact, Update) {
using Arg = std::pair<std::string, std::string>;
auto lparam = CreateEmptyGenericParam(0, 1);
std::vector<Arg> args{{"max_depth", "1"}};
auto* p_gpuexact_maker = TreeUpdater::Create("grow_gpu", &lparam);
p_gpuexact_maker->Configure(args);
size_t constexpr kNRows = 4;
size_t constexpr kNCols = 8;
bst_float constexpr kSparsity = 0.0f;
auto dmat = CreateDMatrix(kNRows, kNCols, kSparsity, 3);
std::vector<GradientPair> h_gpair(kNRows);
for (size_t i = 0; i < kNRows; ++i) {
h_gpair[i] = GradientPair(i % 2, 1);
}
HostDeviceVector<GradientPair> gpair (h_gpair);
RegTree tree;
p_gpuexact_maker->Update(&gpair, (*dmat).get(), {&tree});
auto const& nodes = tree.GetNodes();
ASSERT_EQ(nodes.size(), 3);
float constexpr kRtEps = 1e-6;
ASSERT_NEAR(tree.Stat(0).sum_hess, 4, kRtEps);
ASSERT_NEAR(tree.Stat(1).sum_hess, 2, kRtEps);
ASSERT_NEAR(tree.Stat(2).sum_hess, 2, kRtEps);
ASSERT_NEAR(tree.Stat(0).loss_chg, 0.8f, kRtEps);
delete dmat;
delete p_gpuexact_maker;
}
} // namespace tree
} // namespace xgboost

View File

@ -20,16 +20,6 @@ datasets = ["Boston", "Cancer", "Digits", "Sparse regression",
class TestGPU(unittest.TestCase): class TestGPU(unittest.TestCase):
def test_gpu_exact(self):
variable_param = {'max_depth': [2, 6, 15], }
for param in parameter_combinations(variable_param):
param['tree_method'] = 'gpu_exact'
gpu_results = run_suite(param, select_datasets=datasets)
assert_results_non_increasing(gpu_results, 1e-2)
param['tree_method'] = 'exact'
cpu_results = run_suite(param, select_datasets=datasets)
assert_gpu_results(cpu_results, gpu_results)
def test_gpu_hist(self): def test_gpu_hist(self):
test_param = parameter_combinations({'n_gpus': [1], 'max_depth': [2, 8], test_param = parameter_combinations({'n_gpus': [1], 'max_depth': [2, 8],
'max_leaves': [255, 4], 'max_leaves': [255, 4],
@ -65,7 +55,7 @@ class TestGPU(unittest.TestCase):
'max_leaves': [255, 4], 'max_leaves': [255, 4],
'max_bin': [2, 64], 'max_bin': [2, 64],
'grow_policy': ['lossguide'], 'grow_policy': ['lossguide'],
'tree_method': ['gpu_hist', 'gpu_exact']} 'tree_method': ['gpu_hist']}
for param in parameter_combinations(variable_param): for param in parameter_combinations(variable_param):
gpu_results = run_suite(param, select_datasets=datasets) gpu_results = run_suite(param, select_datasets=datasets)
assert_results_non_increasing(gpu_results, 1e-2) assert_results_non_increasing(gpu_results, 1e-2)

View File

@ -444,9 +444,9 @@ def test_sklearn_n_jobs():
def test_kwargs(): def test_kwargs():
params = {'updater': 'grow_gpu', 'subsample': .5, 'n_jobs': -1} params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1}
clf = xgb.XGBClassifier(n_estimators=1000, **params) clf = xgb.XGBClassifier(n_estimators=1000, **params)
assert clf.get_params()['updater'] == 'grow_gpu' assert clf.get_params()['updater'] == 'grow_gpu_hist'
assert clf.get_params()['subsample'] == .5 assert clf.get_params()['subsample'] == .5
assert clf.get_params()['n_estimators'] == 1000 assert clf.get_params()['n_estimators'] == 1000
@ -472,7 +472,7 @@ def test_kwargs_grid_search():
def test_kwargs_error(): def test_kwargs_error():
params = {'updater': 'grow_gpu', 'subsample': .5, 'n_jobs': -1} params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1}
with pytest.raises(TypeError): with pytest.raises(TypeError):
clf = xgb.XGBClassifier(n_jobs=1000, **params) clf = xgb.XGBClassifier(n_jobs=1000, **params)
assert isinstance(clf, xgb.XGBClassifier) assert isinstance(clf, xgb.XGBClassifier)