xgboost/doc/tutorials/external_memory.rst
2019-08-07 11:43:20 +12:00

56 lines
2.0 KiB
ReStructuredText

############################################
Using XGBoost External Memory Version (beta)
############################################
There is no big difference between using external memory version and in-memory version.
The only difference is the filename format.
The external memory version takes in the following filename format:
.. code-block:: none
filename#cacheprefix
The ``filename`` is the normal path to libsvm file you want to load in, and ``cacheprefix`` is a
path to a cache file that XGBoost will use for external memory cache.
.. note:: External memory is not available with GPU algorithms
External memory is not available when ``tree_method`` is set to ``gpu_hist``.
The following code was extracted from `demo/guide-python/external_memory.py <https://github.com/dmlc/xgboost/blob/master/demo/guide-python/external_memory.py>`_:
.. code-block:: python
dtrain = xgb.DMatrix('../data/agaricus.txt.train#dtrain.cache')
You can find that there is additional ``#dtrain.cache`` following the libsvm file, this is the name of cache file.
For CLI version, simply add the cache suffix, e.g. ``"../data/agaricus.txt.train#dtrain.cache"``.
****************
Performance Note
****************
* the parameter ``nthread`` should be set to number of **physical** cores
- Most modern CPUs use hyperthreading, which means a 4 core CPU may carry 8 threads
- Set ``nthread`` to be 4 for maximum performance in such case
*******************
Distributed Version
*******************
The external memory mode naturally works on distributed version, you can simply set path like
.. code-block:: none
data = "hdfs://path-to-data/#dtrain.cache"
XGBoost will cache the data to the local position. When you run on YARN, the current folder is temporal
so that you can directly use ``dtrain.cache`` to cache to current folder.
**********
Usage Note
**********
* This is a experimental version
* Currently only importing from libsvm format is supported
- Contribution of ingestion from other common external memory data source is welcomed