xgboost/tests/cpp/test_learner.cc
2019-08-07 11:43:20 +12:00

216 lines
7.4 KiB
C++

// Copyright by Contributors
#include <gtest/gtest.h>
#include <vector>
#include "helpers.h"
#include "xgboost/learner.h"
#include "dmlc/filesystem.h"
namespace xgboost {
TEST(Learner, Basic) {
using Arg = std::pair<std::string, std::string>;
auto args = {Arg("tree_method", "exact")};
auto mat_ptr = CreateDMatrix(10, 10, 0);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams(args);
delete mat_ptr;
auto major = XGBOOST_VER_MAJOR;
auto minor = XGBOOST_VER_MINOR;
auto patch = XGBOOST_VER_PATCH;
static_assert(std::is_integral<decltype(major)>::value, "Wrong major version type");
static_assert(std::is_integral<decltype(minor)>::value, "Wrong minor version type");
static_assert(std::is_integral<decltype(patch)>::value, "Wrong patch version type");
}
TEST(Learner, CheckGroup) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kNumGroups = 4;
size_t constexpr kNumRows = 17;
size_t constexpr kNumCols = 15;
auto pp_mat = CreateDMatrix(kNumRows, kNumCols, 0);
auto& p_mat = *pp_mat;
std::vector<bst_float> weight(kNumGroups);
std::vector<bst_int> group(kNumGroups);
group[0] = 2;
group[1] = 3;
group[2] = 7;
group[3] = 5;
std::vector<bst_float> labels (kNumRows);
for (size_t i = 0; i < kNumRows; ++i) {
labels[i] = i % 2;
}
p_mat->Info().SetInfo(
"weight", static_cast<void*>(weight.data()), DataType::kFloat32, kNumGroups);
p_mat->Info().SetInfo(
"group", group.data(), DataType::kUInt32, kNumGroups);
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams({Arg{"objective", "rank:pairwise"}});
EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat.get()));
group.resize(kNumGroups+1);
group[3] = 4;
group[4] = 1;
p_mat->Info().SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1);
EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat.get()));
delete pp_mat;
}
TEST(Learner, SLOW_CheckMultiBatch) {
using Arg = std::pair<std::string, std::string>;
// Create sufficiently large data to make two row pages
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/big.libsvm";
CreateBigTestData(tmp_file, 5000000);
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load( tmp_file + "#" + tmp_file + ".cache", true, false));
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
EXPECT_FALSE(dmat->SingleColBlock());
size_t num_row = dmat->Info().num_row_;
std::vector<bst_float> labels(num_row);
for (size_t i = 0; i < num_row; ++i) {
labels[i] = i % 2;
}
dmat->Info().SetInfo("label", labels.data(), DataType::kFloat32, num_row);
std::vector<std::shared_ptr<DMatrix>> mat{dmat};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->SetParams({Arg{"objective", "binary:logistic"}, Arg{"verbosity", "3"}});
learner->UpdateOneIter(0, dmat.get());
}
TEST(Learner, Configuration) {
std::string const emetric = "eval_metric";
{
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
learner->SetParam(emetric, "auc");
learner->SetParam(emetric, "rmsle");
learner->SetParam("foo", "bar");
// eval_metric is not part of configuration
auto attr_names = learner->GetConfigurationArguments();
ASSERT_EQ(attr_names.size(), 1);
ASSERT_EQ(attr_names.find(emetric), attr_names.cend());
ASSERT_EQ(attr_names.at("foo"), "bar");
}
{
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
learner->SetParams({{"foo", "bar"}, {emetric, "auc"}, {emetric, "entropy"}, {emetric, "KL"}});
auto attr_names = learner->GetConfigurationArguments();
ASSERT_EQ(attr_names.size(), 1);
ASSERT_EQ(attr_names.at("foo"), "bar");
}
}
#if defined(XGBOOST_USE_CUDA)
TEST(Learner, IO) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kRows = 10;
auto pp_dmat = CreateDMatrix(kRows, 10, 0);
auto p_dmat = *pp_dmat;
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < labels.size(); ++i) {
labels[i] = i;
}
p_dmat->Info().labels_.HostVector() = labels;
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "auto"},
Arg{"predictor", "gpu_predictor"},
Arg{"n_gpus", "-1"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, -1);
dmlc::TemporaryDirectory tempdir;
const std::string fname = tempdir.path + "/model.bst";
{
// Create a scope to close the stream before next read.
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
learner->Save(fo.get());
}
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
learner->Load(fi.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 0);
delete pp_dmat;
}
// Tests for automatic GPU configuration.
TEST(Learner, GPUConfiguration) {
using Arg = std::pair<std::string, std::string>;
size_t constexpr kRows = 10;
auto pp_dmat = CreateDMatrix(kRows, 10, 0);
auto p_dmat = *pp_dmat;
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < labels.size(); ++i) {
labels[i] = i;
}
p_dmat->Info().labels_.HostVector() = labels;
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"booster", "gblinear"},
Arg{"updater", "gpu_coord_descent"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
}
{
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "gpu_hist"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
}
{
// with CPU algorithm
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 0);
}
{
// with CPU algorithm, but `n_gpus` takes priority
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"},
Arg{"n_gpus", "1"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
}
{
// With CPU algorithm but GPU Predictor, this is to simulate when
// XGBoost is only used for prediction, so tree method is not
// specified.
std::unique_ptr<Learner> learner {Learner::Create(mat)};
learner->SetParams({Arg{"tree_method", "hist"},
Arg{"predictor", "gpu_predictor"}});
learner->UpdateOneIter(0, p_dmat.get());
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
ASSERT_EQ(learner->GetGenericParameter().n_gpus, 1);
}
delete pp_dmat;
}
#endif // XGBOOST_USE_CUDA
} // namespace xgboost