ZhouYong fee1181803 fix online prediction function in learner.h (#2010)
I use the online prediction function(`inline void Predict(const SparseBatch::Inst &inst, ... ) const;`), the results obtained are different from the results of the batch prediction function(`  virtual void Predict(DMatrix* data, ...) const = 0`). After the investigation found that the online prediction function using the `base_score_` parameters, and the batch prediction function is not used in this parameter. It is found that the `base_score_` values are different when the same model file is loaded many times.

```
1st times:base_score_: 6.69023e-21
2nd times:base_score_: -3.7668e+19
3rd times:base_score_: 5.40507e+07
```
 Online prediction results are affected by `base_score_` parameters. After deleting the if condition(`if (out_preds->size() == 1)`) , the online prediction is consistent with the batch prediction results, and the xgboost prediction results are consistent with python version.  Therefore, it is likely that the online prediction function is bug
2017-03-16 10:35:52 -07:00
2017-03-09 09:06:37 -08:00
2016-01-16 10:24:00 -08:00
2016-08-17 22:50:37 -07:00
2016-12-16 21:56:10 +01:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%