xgboost/README.md
2024-05-14 12:58:50 -07:00

57 lines
3.8 KiB
Markdown

<img src="https://xgboost.ai/images/logo/xgboost-logo-ng-trimmed.png" width=200/> eXtreme Gradient Boosting
===========
[![Build Status](https://badge.buildkite.com/aca47f40a32735c00a8550540c5eeff6a4c1d246a580cae9b0.svg?branch=master)](https://buildkite.com/xgboost/xgboost-ci)
[![XGBoost-CI](https://github.com/dmlc/xgboost/workflows/XGBoost-CI/badge.svg?branch=master)](https://github.com/dmlc/xgboost/actions)
[![Documentation Status](https://readthedocs.org/projects/xgboost/badge/?version=latest)](https://xgboost.readthedocs.org)
[![GitHub license](http://dmlc.github.io/img/apache2.svg)](./LICENSE)
[![CRAN Status Badge](http://www.r-pkg.org/badges/version/xgboost)](http://cran.r-project.org/web/packages/xgboost)
[![PyPI version](https://badge.fury.io/py/xgboost.svg)](https://pypi.python.org/pypi/xgboost/)
[![Conda version](https://img.shields.io/conda/vn/conda-forge/py-xgboost.svg)](https://anaconda.org/conda-forge/py-xgboost)
[![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)
[![Twitter](https://img.shields.io/badge/@XGBoostProject--_.svg?style=social&logo=twitter)](https://twitter.com/XGBoostProject)
[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/dmlc/xgboost/badge)](https://api.securityscorecards.dev/projects/github.com/dmlc/xgboost)
[Community](https://xgboost.ai/community) |
[Documentation](https://xgboost.readthedocs.org) |
[Resources](demo/README.md) |
[Contributors](CONTRIBUTORS.md) |
[Release Notes](NEWS.md)
XGBoost is an optimized distributed gradient boosting library designed to be highly ***efficient***, ***flexible*** and ***portable***.
It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework.
XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way.
The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, Dask, Spark, PySpark) and can solve problems beyond billions of examples.
License
-------
© Contributors, 2021. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license.
Contribute to XGBoost
---------------------
XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.
Checkout the [Community Page](https://xgboost.ai/community).
Reference
---------
- Tianqi Chen and Carlos Guestrin. [XGBoost: A Scalable Tree Boosting System](http://arxiv.org/abs/1603.02754). In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
- XGBoost originates from research project at University of Washington.
Sponsors
--------
Become a sponsor and get a logo here. See details at [Sponsoring the XGBoost Project](https://xgboost.ai/sponsors). The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).
## Open Source Collective sponsors
[![Backers on Open Collective](https://opencollective.com/xgboost/backers/badge.svg)](#backers) [![Sponsors on Open Collective](https://opencollective.com/xgboost/sponsors/badge.svg)](#sponsors)
### Sponsors
[[Become a sponsor](https://opencollective.com/xgboost#sponsor)]
<a href="https://www.nvidia.com/en-us/" target="_blank"><img src="https://raw.githubusercontent.com/xgboost-ai/xgboost-ai.github.io/master/images/sponsors/nvidia.jpg" alt="NVIDIA" width="72" height="72"></a>
<a href="https://www.intel.com/" target="_blank"><img src="https://images.opencollective.com/intel-corporation/2fa85c1/logo/256.png" width="72" height="72"></a>
### Backers
[[Become a backer](https://opencollective.com/xgboost#backer)]
<a href="https://opencollective.com/xgboost#backers" target="_blank"><img src="https://opencollective.com/xgboost/backers.svg?width=890"></a>