xgboost/demo/README.md
tqchen e8de5da3a5 Document refactor
change badge
2015-08-02 19:01:38 -07:00

53 lines
2.3 KiB
Markdown

XGBoost Code Examples
=====================
This folder contains all the code examples using xgboost.
* Contribution of examples, benchmarks is more than welcome!
* If you like to share how you use xgboost to solve your problem, send a pull request:)
Features Walkthrough
--------------------
This is a list of short codes introducing different functionalities of xgboost packages.
* Basic walkthrough of packages
[python](guide-python/basic_walkthrough.py)
[R](../R-package/demo/basic_walkthrough.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/basic_walkthrough.jl)
* Customize loss function, and evaluation metric
[python](guide-python/custom_objective.py)
[R](../R-package/demo/custom_objective.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/custom_objective.jl)
* Boosting from existing prediction
[python](guide-python/boost_from_prediction.py)
[R](../R-package/demo/boost_from_prediction.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/boost_from_prediction.jl)
* Predicting using first n trees
[python](guide-python/predict_first_ntree.py)
[R](../R-package/demo/boost_from_prediction.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/boost_from_prediction.jl)
* Generalized Linear Model
[python](guide-python/generalized_linear_model.py)
[R](../R-package/demo/generalized_linear_model.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/generalized_linear_model.jl)
* Cross validation
[python](guide-python/cross_validation.py)
[R](../R-package/demo/cross_validation.R)
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/cross_validation.jl)
* Predicting leaf indices
[python](guide-python/predict_leaf_indices.py)
[R](../R-package/demo/predict_leaf_indices.R)
Basic Examples by Tasks
-----------------------
Most of examples in this section are based on CLI or python version.
However, the parameter settings can be applied to all versions
* [Binary classification](binary_classification)
* [Multiclass classification](multiclass_classification)
* [Regression](regression)
* [Learning to Rank](rank)
Benchmarks
----------
* [Starter script for Kaggle Higgs Boson](kaggle-higgs)
* [Kaggle Tradeshift winning solution by daxiongshu](https://github.com/daxiongshu/kaggle-tradeshift-winning-solution)