xgboost/README.md
2015-07-24 17:00:02 -07:00

4.4 KiB

XGBoost

Build Status Gitter chat for developers at https://gitter.im/dmlc/xgboost

An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version.

It implements machine learning algorithms under the Gradient Boosting framework, including Generalized Linear Model (GLM) and Gradient Boosted Decision Trees (GBDT). XGBoost can also be distributed and scale to Terascale data

XGBoost is part of Distributed Machine Learning Common projects

Contents

What's New

Version

  • Current version xgboost-0.4, a lot improvment has been made since 0.3
    • Change log in CHANGES.md
    • This version is compatible with 0.3x versions

Features

  • Easily accessible through python, R, Julia, CLI
  • Fast and memory efficient
    • Can be more than 10 times faster than GBM in sklearn and R. benchm-ml numbers
    • Handles sparse matrices, support external memory
  • Accurate prediction, and used extensively by data scientists and kagglers
  • Distributed and Portable
    • The distributed version runs on Hadoop (YARN), MPI, SGE etc.
    • Scales to billions of examples and beyond

Bug Reporting

Contributing to XGBoost

XGBoost has been developed and used by a group of active community members. Everyone is more than welcome to contribute. It is a way to make the project better and more accessible to more users.

License

© Contributors, 2015. Licensed under an Apache-2 license.

XGBoost in Graphlab Create