ShvetsKS c1ca872d1e
Modin DF support (#6055)
* Modin DF support

* mode change

* tests were added, ci env was extended

* mode change

* Remove redundant installation of modin

* Add a pytest skip marker for modin

* Install Modin[ray] from PyPI

* fix interfering

* avoid extra conversion

* delete cv test for modin

* revert cv function

Co-authored-by: ShvetsKS <kirill.shvets@intel.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-08-29 22:33:30 +03:00

802 lines
27 KiB
Python

# pylint: disable=too-many-arguments, too-many-branches
# pylint: disable=too-many-return-statements, import-error
'''Data dispatching for DMatrix.'''
import ctypes
import json
import warnings
import numpy as np
from .core import c_array, _LIB, _check_call, c_str
from .core import DataIter, DeviceQuantileDMatrix, DMatrix
from .compat import lazy_isinstance, os_fspath, os_PathLike
c_bst_ulong = ctypes.c_uint64 # pylint: disable=invalid-name
def _warn_unused_missing(data, missing):
if (missing is not None) and (not np.isnan(missing)):
warnings.warn(
'`missing` is not used for current input data type:' +
str(type(data)), UserWarning)
def _check_complex(data):
'''Test whether data is complex using `dtype` attribute.'''
complex_dtypes = (np.complex128, np.complex64,
np.cfloat, np.cdouble, np.clongdouble)
if hasattr(data, 'dtype') and data.dtype in complex_dtypes:
raise ValueError('Complex data not supported')
def _is_scipy_csr(data):
try:
import scipy
except ImportError:
scipy = None
return False
return isinstance(data, scipy.sparse.csr_matrix)
def _from_scipy_csr(data, missing, feature_names, feature_types):
'''Initialize data from a CSR matrix.'''
if len(data.indices) != len(data.data):
raise ValueError('length mismatch: {} vs {}'.format(
len(data.indices), len(data.data)))
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromCSREx(
c_array(ctypes.c_size_t, data.indptr),
c_array(ctypes.c_uint, data.indices),
c_array(ctypes.c_float, data.data),
ctypes.c_size_t(len(data.indptr)),
ctypes.c_size_t(len(data.data)),
ctypes.c_size_t(data.shape[1]),
ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_scipy_csc(data):
try:
import scipy
except ImportError:
scipy = None
return False
return isinstance(data, scipy.sparse.csc_matrix)
def _from_scipy_csc(data, missing, feature_names, feature_types):
if len(data.indices) != len(data.data):
raise ValueError('length mismatch: {} vs {}'.format(
len(data.indices), len(data.data)))
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromCSCEx(
c_array(ctypes.c_size_t, data.indptr),
c_array(ctypes.c_uint, data.indices),
c_array(ctypes.c_float, data.data),
ctypes.c_size_t(len(data.indptr)),
ctypes.c_size_t(len(data.data)),
ctypes.c_size_t(data.shape[0]),
ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_numpy_array(data):
return isinstance(data, (np.ndarray, np.matrix))
def _maybe_np_slice(data, dtype):
'''Handle numpy slice. This can be removed if we use __array_interface__.
'''
try:
if not data.flags.c_contiguous:
warnings.warn(
"Use subset (sliced data) of np.ndarray is not recommended " +
"because it will generate extra copies and increase " +
"memory consumption")
data = np.array(data, copy=True, dtype=dtype)
else:
data = np.array(data, copy=False, dtype=dtype)
except AttributeError:
data = np.array(data, copy=False, dtype=dtype)
return data
def _transform_np_array(data: np.ndarray):
if not isinstance(data, np.ndarray) and hasattr(data, '__array__'):
data = np.array(data, copy=False)
if len(data.shape) != 2:
raise ValueError('Expecting 2 dimensional numpy.ndarray, got: ',
data.shape)
# flatten the array by rows and ensure it is float32. we try to avoid
# data copies if possible (reshape returns a view when possible and we
# explicitly tell np.array to try and avoid copying)
flatten = np.array(data.reshape(data.size), copy=False,
dtype=np.float32)
flatten = _maybe_np_slice(flatten, np.float32)
_check_complex(data)
return flatten
def _from_numpy_array(data, missing, nthread, feature_names, feature_types):
"""Initialize data from a 2-D numpy matrix.
If ``mat`` does not have ``order='C'`` (aka row-major) or is
not contiguous, a temporary copy will be made.
If ``mat`` does not have ``dtype=numpy.float32``, a temporary copy will
be made.
So there could be as many as two temporary data copies; be mindful of
input layout and type if memory use is a concern.
"""
flatten = _transform_np_array(data)
handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromMat_omp(
flatten.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
c_bst_ulong(data.shape[0]),
c_bst_ulong(data.shape[1]),
ctypes.c_float(missing),
ctypes.byref(handle),
ctypes.c_int(nthread)))
return handle, feature_names, feature_types
def _is_pandas_df(data):
try:
import pandas as pd
except ImportError:
return False
return isinstance(data, pd.DataFrame)
def _is_modin_df(data):
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.DataFrame)
_pandas_dtype_mapper = {
'int8': 'int',
'int16': 'int',
'int32': 'int',
'int64': 'int',
'uint8': 'int',
'uint16': 'int',
'uint32': 'int',
'uint64': 'int',
'float16': 'float',
'float32': 'float',
'float64': 'float',
'bool': 'i'
}
def _transform_pandas_df(data, feature_names=None, feature_types=None,
meta=None, meta_type=None):
from pandas import MultiIndex, Int64Index
from pandas.api.types import is_sparse
data_dtypes = data.dtypes
if not all(dtype.name in _pandas_dtype_mapper or is_sparse(dtype)
for dtype in data_dtypes):
bad_fields = [
str(data.columns[i]) for i, dtype in enumerate(data_dtypes)
if dtype.name not in _pandas_dtype_mapper
]
msg = """DataFrame.dtypes for data must be int, float or bool.
Did not expect the data types in fields """
raise ValueError(msg + ', '.join(bad_fields))
if feature_names is None and meta is None:
if isinstance(data.columns, MultiIndex):
feature_names = [
' '.join([str(x) for x in i]) for i in data.columns
]
elif isinstance(data.columns, Int64Index):
feature_names = list(map(str, data.columns))
else:
feature_names = data.columns.format()
if feature_types is None and meta is None:
feature_types = []
for dtype in data_dtypes:
if is_sparse(dtype):
feature_types.append(_pandas_dtype_mapper[
dtype.subtype.name])
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
if meta and len(data.columns) > 1:
raise ValueError(
'DataFrame for {meta} cannot have multiple columns'.format(
meta=meta))
dtype = meta_type if meta_type else np.float32
data = np.ascontiguousarray(data.values, dtype=dtype)
return data, feature_names, feature_types
def _from_pandas_df(data, missing, nthread, feature_names, feature_types):
data, feature_names, feature_types = _transform_pandas_df(
data, feature_names, feature_types)
return _from_numpy_array(data, missing, nthread, feature_names,
feature_types)
def _is_pandas_series(data):
try:
import pandas as pd
except ImportError:
return False
return isinstance(data, pd.Series)
def _is_modin_series(data):
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.Series)
def _from_pandas_series(data, missing, nthread, feature_types, feature_names):
return _from_numpy_array(data.values.astype('float'), missing, nthread,
feature_names, feature_types)
def _is_dt_df(data):
return lazy_isinstance(data, 'datatable', 'Frame') or \
lazy_isinstance(data, 'datatable', 'DataTable')
_dt_type_mapper = {'bool': 'bool', 'int': 'int', 'real': 'float'}
_dt_type_mapper2 = {'bool': 'i', 'int': 'int', 'real': 'float'}
def _transform_dt_df(data, feature_names, feature_types, meta=None,
meta_type=None):
"""Validate feature names and types if data table"""
if meta and data.shape[1] > 1:
raise ValueError(
'DataTable for label or weight cannot have multiple columns')
if meta:
# below requires new dt version
# extract first column
data = data.to_numpy()[:, 0].astype(meta_type)
return data, None, None
data_types_names = tuple(lt.name for lt in data.ltypes)
bad_fields = [data.names[i]
for i, type_name in enumerate(data_types_names)
if type_name not in _dt_type_mapper]
if bad_fields:
msg = """DataFrame.types for data must be int, float or bool.
Did not expect the data types in fields """
raise ValueError(msg + ', '.join(bad_fields))
if feature_names is None and meta is None:
feature_names = data.names
# always return stypes for dt ingestion
if feature_types is not None:
raise ValueError(
'DataTable has own feature types, cannot pass them in.')
feature_types = np.vectorize(_dt_type_mapper2.get)(
data_types_names).tolist()
return data, feature_names, feature_types
def _from_dt_df(data, missing, nthread, feature_names, feature_types):
data, feature_names, feature_types = _transform_dt_df(
data, feature_names, feature_types, None, None)
ptrs = (ctypes.c_void_p * data.ncols)()
if hasattr(data, "internal") and hasattr(data.internal, "column"):
# datatable>0.8.0
for icol in range(data.ncols):
col = data.internal.column(icol)
ptr = col.data_pointer
ptrs[icol] = ctypes.c_void_p(ptr)
else:
# datatable<=0.8.0
from datatable.internal import \
frame_column_data_r # pylint: disable=no-name-in-module
for icol in range(data.ncols):
ptrs[icol] = frame_column_data_r(data, icol)
# always return stypes for dt ingestion
feature_type_strings = (ctypes.c_char_p * data.ncols)()
for icol in range(data.ncols):
feature_type_strings[icol] = ctypes.c_char_p(
data.stypes[icol].name.encode('utf-8'))
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromDT(
ptrs, feature_type_strings,
c_bst_ulong(data.shape[0]),
c_bst_ulong(data.shape[1]),
ctypes.byref(handle),
ctypes.c_int(nthread)))
return handle, feature_names, feature_types
def _is_cudf_df(data):
try:
import cudf
except ImportError:
return False
return hasattr(cudf, 'DataFrame') and isinstance(data, cudf.DataFrame)
def _cudf_array_interfaces(data):
'''Extract CuDF __cuda_array_interface__'''
interfaces = []
if _is_cudf_ser(data):
interfaces.append(data.__cuda_array_interface__)
else:
for col in data:
interface = data[col].__cuda_array_interface__
if 'mask' in interface:
interface['mask'] = interface['mask'].__cuda_array_interface__
interfaces.append(interface)
interfaces_str = bytes(json.dumps(interfaces, indent=2), 'utf-8')
return interfaces_str
def _transform_cudf_df(data, feature_names, feature_types):
if feature_names is None:
if _is_cudf_ser(data):
feature_names = [data.name]
elif lazy_isinstance(
data.columns, 'cudf.core.multiindex', 'MultiIndex'):
feature_names = [
' '.join([str(x) for x in i])
for i in data.columns
]
else:
feature_names = data.columns.format()
if feature_types is None:
if _is_cudf_ser(data):
dtypes = [data.dtype]
else:
dtypes = data.dtypes
feature_types = [_pandas_dtype_mapper[d.name]
for d in dtypes]
return data, feature_names, feature_types
def _from_cudf_df(data, missing, nthread, feature_names, feature_types):
data, feature_names, feature_types = _transform_cudf_df(
data, feature_names, feature_types)
interfaces_str = _cudf_array_interfaces(data)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromArrayInterfaceColumns(
interfaces_str,
ctypes.c_float(missing),
ctypes.c_int(nthread),
ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_cudf_ser(data):
try:
import cudf
except ImportError:
return False
return isinstance(data, cudf.Series)
def _is_cupy_array(data):
try:
import cupy
except ImportError:
return False
return isinstance(data, cupy.ndarray)
def _transform_cupy_array(data):
if not hasattr(data, '__cuda_array_interface__') and hasattr(
data, '__array__'):
import cupy # pylint: disable=import-error
data = cupy.array(data, copy=False)
return data
def _from_cupy_array(data, missing, nthread, feature_names, feature_types):
"""Initialize DMatrix from cupy ndarray."""
data = _transform_cupy_array(data)
interface = data.__cuda_array_interface__
if 'mask' in interface:
interface['mask'] = interface['mask'].__cuda_array_interface__
interface_str = bytes(json.dumps(interface, indent=2), 'utf-8')
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromArrayInterface(
interface_str,
ctypes.c_float(missing),
ctypes.c_int(nthread),
ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_cupy_csr(data):
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csr_matrix)
def _is_cupy_csc(data):
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csc_matrix)
def _is_dlpack(data):
return 'PyCapsule' in str(type(data)) and "dltensor" in str(data)
def _transform_dlpack(data):
from cupy import fromDlpack # pylint: disable=E0401
assert 'used_dltensor' not in str(data)
data = fromDlpack(data)
return data
def _from_dlpack(data, missing, nthread, feature_names, feature_types):
data = _transform_dlpack(data)
return _from_cupy_array(data, missing, nthread, feature_names,
feature_types)
def _is_uri(data):
return isinstance(data, (str, os_PathLike))
def _from_uri(data, missing, feature_names, feature_types):
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
_check_call(_LIB.XGDMatrixCreateFromFile(c_str(os_fspath(data)),
ctypes.c_int(1),
ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_list(data):
return isinstance(data, list)
def _from_list(data, missing, feature_names, feature_types):
raise TypeError('List input data is not supported for data')
def _is_tuple(data):
return isinstance(data, tuple)
def _from_tuple(data, missing, feature_names, feature_types):
return _from_list(data, missing, feature_names, feature_types)
def _is_iter(data):
return isinstance(data, DataIter)
def _has_array_protocol(data):
return hasattr(data, '__array__')
def dispatch_data_backend(data, missing, threads,
feature_names, feature_types):
'''Dispatch data for DMatrix.'''
if _is_scipy_csr(data):
return _from_scipy_csr(data, missing, feature_names, feature_types)
if _is_scipy_csc(data):
return _from_scipy_csc(data, missing, feature_names, feature_types)
if _is_numpy_array(data):
return _from_numpy_array(data, missing, threads, feature_names,
feature_types)
if _is_uri(data):
return _from_uri(data, missing, feature_names, feature_types)
if _is_list(data):
return _from_list(data, missing, feature_names, feature_types)
if _is_tuple(data):
return _from_tuple(data, missing, feature_names, feature_types)
if _is_pandas_df(data):
return _from_pandas_df(data, missing, threads,
feature_names, feature_types)
if _is_pandas_series(data):
return _from_pandas_series(data, missing, threads, feature_names,
feature_types)
if _is_cudf_df(data):
return _from_cudf_df(data, missing, threads, feature_names,
feature_types)
if _is_cudf_ser(data):
return _from_cudf_df(data, missing, threads, feature_names,
feature_types)
if _is_cupy_array(data):
return _from_cupy_array(data, missing, threads, feature_names,
feature_types)
if _is_cupy_csr(data):
raise TypeError('cupyx CSR is not supported yet.')
if _is_cupy_csc(data):
raise TypeError('cupyx CSC is not supported yet.')
if _is_dlpack(data):
return _from_dlpack(data, missing, threads, feature_names,
feature_types)
if _is_dt_df(data):
_warn_unused_missing(data, missing)
return _from_dt_df(data, missing, threads, feature_names,
feature_types)
if _is_modin_df(data):
return _from_pandas_df(data, missing, threads,
feature_names, feature_types)
if _is_modin_series(data):
return _from_pandas_series(data, missing, threads, feature_names,
feature_types)
if _has_array_protocol(data):
pass
raise TypeError('Not supported type for data.' + str(type(data)))
def _to_data_type(dtype: str, name: str):
dtype_map = {'float32': 1, 'float64': 2, 'uint32': 3, 'uint64': 4}
if dtype not in dtype_map.keys():
raise TypeError(
f'Expecting float32, float64, uint32, uint64, got {dtype} ' +
f'for {name}.')
return dtype_map[dtype]
def _validate_meta_shape(data):
if hasattr(data, 'shape'):
assert len(data.shape) == 1 or (
len(data.shape) == 2 and
(data.shape[1] == 0 or data.shape[1] == 1))
def _meta_from_numpy(data, field, dtype, handle):
data = _maybe_np_slice(data, dtype)
interface = data.__array_interface__
assert interface.get('mask', None) is None, 'Masked array is not supported'
size = data.shape[0]
c_type = _to_data_type(str(data.dtype), field)
ptr = interface['data'][0]
ptr = ctypes.c_void_p(ptr)
_check_call(_LIB.XGDMatrixSetDenseInfo(
handle,
c_str(field),
ptr,
c_bst_ulong(size),
c_type
))
def _meta_from_list(data, field, dtype, handle):
data = np.array(data)
_meta_from_numpy(data, field, dtype, handle)
def _meta_from_tuple(data, field, dtype, handle):
return _meta_from_list(data, field, dtype, handle)
def _meta_from_cudf_df(data, field, handle):
if len(data.columns) != 1:
raise ValueError(
'Expecting meta-info to contain a single column')
data = data[data.columns[0]]
interface = bytes(json.dumps([data.__cuda_array_interface__],
indent=2), 'utf-8')
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle,
c_str(field),
interface))
def _meta_from_cudf_series(data, field, handle):
interface = bytes(json.dumps([data.__cuda_array_interface__],
indent=2), 'utf-8')
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle,
c_str(field),
interface))
def _meta_from_cupy_array(data, field, handle):
data = _transform_cupy_array(data)
interface = bytes(json.dumps([data.__cuda_array_interface__],
indent=2), 'utf-8')
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle,
c_str(field),
interface))
def _meta_from_dt(data, field, dtype, handle):
data, _, _ = _transform_dt_df(data, None, None)
_meta_from_numpy(data, field, dtype, handle)
def dispatch_meta_backend(matrix: DMatrix, data, name: str, dtype: str = None):
'''Dispatch for meta info.'''
handle = matrix.handle
_validate_meta_shape(data)
if data is None:
return
if _is_list(data):
_meta_from_list(data, name, dtype, handle)
return
if _is_tuple(data):
_meta_from_tuple(data, name, dtype, handle)
return
if _is_numpy_array(data):
_meta_from_numpy(data, name, dtype, handle)
return
if _is_pandas_df(data):
data, _, _ = _transform_pandas_df(data, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_pandas_series(data):
data = data.values.astype('float')
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
return
if _is_dlpack(data):
data = _transform_dlpack(data)
_meta_from_cupy_array(data, name, handle)
return
if _is_cupy_array(data):
_meta_from_cupy_array(data, name, handle)
return
if _is_cudf_ser(data):
_meta_from_cudf_series(data, name, handle)
return
if _is_cudf_df(data):
_meta_from_cudf_df(data, name, handle)
return
if _is_dt_df(data):
_meta_from_dt(data, name, dtype, handle)
return
if _is_modin_df(data):
data, _, _ = _transform_pandas_df(data, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_modin_series(data):
data = data.values.astype('float')
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
return
if _has_array_protocol(data):
pass
raise TypeError('Unsupported type for ' + name, str(type(data)))
class SingleBatchInternalIter(DataIter): # pylint: disable=R0902
'''An iterator for single batch data to help creating device DMatrix.
Transforming input directly to histogram with normal single batch data API
can not access weight for sketching. So this iterator acts as a staging
area for meta info.
'''
def __init__(self, data, label, weight, base_margin, group,
label_lower_bound, label_upper_bound,
feature_names, feature_types):
self.data = data
self.label = label
self.weight = weight
self.base_margin = base_margin
self.group = group
self.label_lower_bound = label_lower_bound
self.label_upper_bound = label_upper_bound
self.feature_names = feature_names
self.feature_types = feature_types
self.it = 0 # pylint: disable=invalid-name
super().__init__()
def next(self, input_data):
if self.it == 1:
return 0
self.it += 1
input_data(data=self.data, label=self.label,
weight=self.weight, base_margin=self.base_margin,
group=self.group,
label_lower_bound=self.label_lower_bound,
label_upper_bound=self.label_upper_bound,
feature_names=self.feature_names,
feature_types=self.feature_types)
return 1
def reset(self):
self.it = 0
def init_device_quantile_dmatrix(
data, missing, max_bin, threads, feature_names, feature_types, **meta):
'''Constructor for DeviceQuantileDMatrix.'''
if not any([_is_cudf_df(data), _is_cudf_ser(data), _is_cupy_array(data),
_is_dlpack(data), _is_iter(data)]):
raise TypeError(str(type(data)) +
' is not supported for DeviceQuantileDMatrix')
if _is_dlpack(data):
# We specialize for dlpack because cupy will take the memory from it so
# it can't be transformed twice.
data = _transform_dlpack(data)
if _is_iter(data):
it = data
else:
it = SingleBatchInternalIter(
data, **meta, feature_names=feature_names,
feature_types=feature_types)
reset_factory = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
reset_callback = reset_factory(it.reset_wrapper)
next_factory = ctypes.CFUNCTYPE(
ctypes.c_int,
ctypes.c_void_p,
)
next_callback = next_factory(it.next_wrapper)
handle = ctypes.c_void_p()
ret = _LIB.XGDeviceQuantileDMatrixCreateFromCallback(
None,
it.proxy.handle,
reset_callback,
next_callback,
ctypes.c_float(missing),
ctypes.c_int(threads),
ctypes.c_int(max_bin),
ctypes.byref(handle)
)
if it.exception:
raise it.exception
# delay check_call to throw intermediate exception first
_check_call(ret)
matrix = DeviceQuantileDMatrix(handle)
feature_names = matrix.feature_names
feature_types = matrix.feature_types
matrix.handle = None
return handle, feature_names, feature_types
def _device_quantile_transform(data, feature_names, feature_types):
if _is_cudf_df(data):
return _transform_cudf_df(data, feature_names, feature_types)
if _is_cudf_ser(data):
return _transform_cudf_df(data, feature_names, feature_types)
if _is_cupy_array(data):
data = _transform_cupy_array(data)
return data, feature_names, feature_types
if _is_dlpack(data):
return _transform_dlpack(data), feature_names, feature_types
raise TypeError('Value type is not supported for data iterator:' +
str(type(data)))
def dispatch_device_quantile_dmatrix_set_data(proxy, data):
'''Dispatch for DeviceQuantileDMatrix.'''
if _is_cudf_df(data):
proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212
return
if _is_cudf_ser(data):
proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212
return
if _is_cupy_array(data):
proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212
return
if _is_dlpack(data):
data = _transform_dlpack(data)
proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212
return
raise TypeError('Value type is not supported for data iterator:' +
str(type(data)))