xgboost/tests/cpp/common/test_stats.cu

157 lines
5.8 KiB
Plaintext

/**
* Copyright 2022-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <cstddef> // std::size_t
#include <utility> // std::pair
#include <vector> // std::vector
#include "../../../src/common/linalg_op.cuh" // ElementWiseTransformDevice
#include "../../../src/common/stats.cuh"
#include "../helpers.h"
#include "xgboost/base.h" // XGBOOST_DEVICE
#include "xgboost/context.h" // Context
#include "xgboost/host_device_vector.h" // HostDeviceVector
#include "xgboost/linalg.h" // Tensor
namespace xgboost {
namespace common {
namespace {
class StatsGPU : public ::testing::Test {
private:
linalg::Tensor<float, 1> arr_{{1.f, 2.f, 3.f, 4.f, 5.f, 2.f, 4.f, 5.f, 3.f, 1.f}, {10}, 0};
linalg::Tensor<std::size_t, 1> indptr_{{0, 5, 10}, {3}, 0};
HostDeviceVector<float> results_;
using TestSet = std::vector<std::pair<float, float>>;
Context ctx_;
void Check(float expected) {
auto const& h_results = results_.HostVector();
ASSERT_EQ(h_results.size(), indptr_.Size() - 1);
ASSERT_EQ(h_results.front(), expected);
ASSERT_EQ(h_results.back(), expected);
}
public:
void SetUp() override { ctx_ = MakeCUDACtx(0); }
void WeightedMulti() {
// data for one segment
std::vector<float> seg{1.f, 2.f, 3.f, 4.f, 5.f};
auto seg_size = seg.size();
// 3 segments
std::vector<float> data;
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, 0};
auto d_arr = arr.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
// one alpha for each segment
HostDeviceVector<float> alphas{0.0f, 0.5f, 1.0f};
alphas.SetDevice(0);
auto d_alphas = alphas.ConstDeviceSpan();
auto w_it = thrust::make_constant_iterator(0.1f);
SegmentedWeightedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
val_it + d_arr.Size(), w_it, w_it + d_arr.Size(), &results_);
auto const& h_results = results_.HostVector();
ASSERT_EQ(1.0f, h_results[0]);
ASSERT_EQ(3.0f, h_results[1]);
ASSERT_EQ(5.0f, h_results[2]);
}
void Weighted() {
auto d_arr = arr_.View(DeviceOrd::CUDA(0));
auto d_key = indptr_.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_key(i); });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
linalg::Tensor<float, 1> weights{{10}, 0};
linalg::ElementWiseTransformDevice(weights.View(DeviceOrd::CUDA(0)),
[=] XGBOOST_DEVICE(std::size_t, float) { return 1.0; });
auto w_it = weights.Data()->ConstDevicePointer();
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
SegmentedWeightedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
val_it + arr_.Size(), w_it, w_it + weights.Size(), &results_);
this->Check(pair.second);
}
}
void NonWeightedMulti() {
// data for one segment
std::vector<float> seg{20.f, 15.f, 50.f, 40.f, 35.f};
auto seg_size = seg.size();
// 3 segments
std::vector<float> data;
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, 0};
auto d_arr = arr.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
// one alpha for each segment
HostDeviceVector<float> alphas{0.1f, 0.2f, 0.4f};
alphas.SetDevice(0);
auto d_alphas = alphas.ConstDeviceSpan();
SegmentedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
val_it + d_arr.Size(), &results_);
auto const& h_results = results_.HostVector();
EXPECT_EQ(15.0f, h_results[0]);
EXPECT_EQ(16.0f, h_results[1]);
ASSERT_EQ(26.0f, h_results[2]);
}
void NonWeighted() {
auto d_arr = arr_.View(DeviceOrd::CUDA(0));
auto d_key = indptr_.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul), [=] __device__(std::size_t i) { return d_key(i); });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
SegmentedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
val_it + arr_.Size(), &results_);
this->Check(pair.second);
}
}
};
} // anonymous namespace
TEST_F(StatsGPU, Quantile) {
this->NonWeighted();
this->NonWeightedMulti();
}
TEST_F(StatsGPU, WeightedQuantile) {
this->Weighted();
this->WeightedMulti();
}
} // namespace common
} // namespace xgboost