/** * Copyright 2022-2023 by XGBoost Contributors */ #include #include // std::size_t #include // std::pair #include // std::vector #include "../../../src/common/linalg_op.cuh" // ElementWiseTransformDevice #include "../../../src/common/stats.cuh" #include "../helpers.h" #include "xgboost/base.h" // XGBOOST_DEVICE #include "xgboost/context.h" // Context #include "xgboost/host_device_vector.h" // HostDeviceVector #include "xgboost/linalg.h" // Tensor namespace xgboost { namespace common { namespace { class StatsGPU : public ::testing::Test { private: linalg::Tensor arr_{{1.f, 2.f, 3.f, 4.f, 5.f, 2.f, 4.f, 5.f, 3.f, 1.f}, {10}, 0}; linalg::Tensor indptr_{{0, 5, 10}, {3}, 0}; HostDeviceVector results_; using TestSet = std::vector>; Context ctx_; void Check(float expected) { auto const& h_results = results_.HostVector(); ASSERT_EQ(h_results.size(), indptr_.Size() - 1); ASSERT_EQ(h_results.front(), expected); ASSERT_EQ(h_results.back(), expected); } public: void SetUp() override { ctx_ = MakeCUDACtx(0); } void WeightedMulti() { // data for one segment std::vector seg{1.f, 2.f, 3.f, 4.f, 5.f}; auto seg_size = seg.size(); // 3 segments std::vector data; data.insert(data.cend(), seg.begin(), seg.end()); data.insert(data.cend(), seg.begin(), seg.end()); data.insert(data.cend(), seg.begin(), seg.end()); linalg::Tensor arr{data.cbegin(), data.cend(), {data.size()}, 0}; auto d_arr = arr.View(DeviceOrd::CUDA(0)); auto key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; }); auto val_it = dh::MakeTransformIterator(thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); }); // one alpha for each segment HostDeviceVector alphas{0.0f, 0.5f, 1.0f}; alphas.SetDevice(0); auto d_alphas = alphas.ConstDeviceSpan(); auto w_it = thrust::make_constant_iterator(0.1f); SegmentedWeightedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it, val_it + d_arr.Size(), w_it, w_it + d_arr.Size(), &results_); auto const& h_results = results_.HostVector(); ASSERT_EQ(1.0f, h_results[0]); ASSERT_EQ(3.0f, h_results[1]); ASSERT_EQ(5.0f, h_results[2]); } void Weighted() { auto d_arr = arr_.View(DeviceOrd::CUDA(0)); auto d_key = indptr_.View(DeviceOrd::CUDA(0)); auto key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return d_key(i); }); auto val_it = dh::MakeTransformIterator(thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); }); linalg::Tensor weights{{10}, 0}; linalg::ElementWiseTransformDevice(weights.View(DeviceOrd::CUDA(0)), [=] XGBOOST_DEVICE(std::size_t, float) { return 1.0; }); auto w_it = weights.Data()->ConstDevicePointer(); for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) { SegmentedWeightedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it, val_it + arr_.Size(), w_it, w_it + weights.Size(), &results_); this->Check(pair.second); } } void NonWeightedMulti() { // data for one segment std::vector seg{20.f, 15.f, 50.f, 40.f, 35.f}; auto seg_size = seg.size(); // 3 segments std::vector data; data.insert(data.cend(), seg.begin(), seg.end()); data.insert(data.cend(), seg.begin(), seg.end()); data.insert(data.cend(), seg.begin(), seg.end()); linalg::Tensor arr{data.cbegin(), data.cend(), {data.size()}, 0}; auto d_arr = arr.View(DeviceOrd::CUDA(0)); auto key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; }); auto val_it = dh::MakeTransformIterator(thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); }); // one alpha for each segment HostDeviceVector alphas{0.1f, 0.2f, 0.4f}; alphas.SetDevice(0); auto d_alphas = alphas.ConstDeviceSpan(); SegmentedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it, val_it + d_arr.Size(), &results_); auto const& h_results = results_.HostVector(); EXPECT_EQ(15.0f, h_results[0]); EXPECT_EQ(16.0f, h_results[1]); ASSERT_EQ(26.0f, h_results[2]); } void NonWeighted() { auto d_arr = arr_.View(DeviceOrd::CUDA(0)); auto d_key = indptr_.View(DeviceOrd::CUDA(0)); auto key_it = dh::MakeTransformIterator( thrust::make_counting_iterator(0ul), [=] __device__(std::size_t i) { return d_key(i); }); auto val_it = dh::MakeTransformIterator(thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); }); for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) { SegmentedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it, val_it + arr_.Size(), &results_); this->Check(pair.second); } } }; } // anonymous namespace TEST_F(StatsGPU, Quantile) { this->NonWeighted(); this->NonWeightedMulti(); } TEST_F(StatsGPU, WeightedQuantile) { this->Weighted(); this->WeightedMulti(); } } // namespace common } // namespace xgboost