xgboost/demo/guide-python/sklearn_parallel.py
2015-05-11 09:30:51 -05:00

36 lines
1.3 KiB
Python

import os
if __name__ == "__main__":
# NOTE: on posix systems, this *has* to be here and in the
# `__name__ == "__main__"` clause to run XGBoost in parallel processes
# using fork, if XGBoost was built with OpenMP support. Otherwise, if you
# build XGBoost without OpenMP support, you can use fork, which is the
# default backend for joblib, and omit this.
try:
from multiprocessing import set_start_method
except ImportError:
raise ImportError("Unable to import multiprocessing.set_start_method."
" This example only runs on Python 3.4")
set_start_method("forkserver")
import numpy as np
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import load_boston
import xgboost as xgb
rng = np.random.RandomState(31337)
print("Parallel Parameter optimization")
boston = load_boston()
os.environ["OMP_NUM_THREADS"] = "2" # or to whatever you want
y = boston['target']
X = boston['data']
xgb_model = xgb.XGBRegressor()
clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6],
'n_estimators': [50, 100, 200]}, verbose=1,
n_jobs=2)
clf.fit(X, y)
print(clf.best_score_)
print(clf.best_params_)