EX: Make separate example for fork issue.
This commit is contained in:
parent
fa8c6e2f0b
commit
15ea00540a
@ -4,86 +4,64 @@ Created on 1 Apr 2015
|
||||
|
||||
@author: Jamie Hall
|
||||
'''
|
||||
if __name__ == "__main__":
|
||||
# NOTE: This *has* to be here and in the `__name__ == "__main__"` clause
|
||||
# to run XGBoost in parallel, if XGBoost was built with OpenMP support.
|
||||
# Otherwise, you can use fork, which is the default backend for joblib,
|
||||
# and omit this.
|
||||
from multiprocessing import set_start_method
|
||||
set_start_method("forkserver")
|
||||
import pickle
|
||||
import xgboost as xgb
|
||||
|
||||
import pickle
|
||||
import os
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.cross_validation import KFold
|
||||
from sklearn.metrics import confusion_matrix, mean_squared_error
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
|
||||
import numpy as np
|
||||
from sklearn.cross_validation import KFold
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.metrics import confusion_matrix, mean_squared_error
|
||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||
rng = np.random.RandomState(31337)
|
||||
|
||||
rng = np.random.RandomState(31337)
|
||||
print("Zeros and Ones from the Digits dataset: binary classification")
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(confusion_matrix(actuals, predictions))
|
||||
|
||||
print("Zeros and Ones from the Digits dataset: binary classification")
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(confusion_matrix(actuals, predictions))
|
||||
print("Iris: multiclass classification")
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(confusion_matrix(actuals, predictions))
|
||||
|
||||
print("Iris: multiclass classification")
|
||||
iris = load_iris()
|
||||
y = iris['target']
|
||||
X = iris['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(confusion_matrix(actuals, predictions))
|
||||
print("Boston Housing: regression")
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(mean_squared_error(actuals, predictions))
|
||||
|
||||
print("Boston Housing: regression")
|
||||
boston = load_boston()
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
||||
predictions = xgb_model.predict(X[test_index])
|
||||
actuals = y[test_index]
|
||||
print(mean_squared_error(actuals, predictions))
|
||||
print("Parameter optimization")
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
print(clf.best_score_)
|
||||
print(clf.best_params_)
|
||||
|
||||
print("Parameter optimization")
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1)
|
||||
clf.fit(X,y)
|
||||
print(clf.best_score_)
|
||||
print(clf.best_params_)
|
||||
|
||||
# The sklearn API models are picklable
|
||||
print("Pickling sklearn API models")
|
||||
# must open in binary format to pickle
|
||||
pickle.dump(clf, open("best_boston.pkl", "wb"))
|
||||
clf2 = pickle.load(open("best_boston.pkl", "rb"))
|
||||
print(np.allclose(clf.predict(X), clf2.predict(X)))
|
||||
|
||||
print("Parallel Parameter optimization")
|
||||
os.environ["OMP_NUM_THREADS"] = "1"
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model,
|
||||
{'max_depth': [2,4,6],
|
||||
'n_estimators': [50,100,200]}, verbose=1,
|
||||
n_jobs=2)
|
||||
clf.fit(X, y)
|
||||
print(clf.best_score_)
|
||||
print(clf.best_params_)
|
||||
# The sklearn API models are picklable
|
||||
print("Pickling sklearn API models")
|
||||
# must open in binary format to pickle
|
||||
pickle.dump(clf, open("best_boston.pkl", "wb"))
|
||||
clf2 = pickle.load(open("best_boston.pkl", "rb"))
|
||||
print(np.allclose(clf.predict(X), clf2.predict(X)))
|
||||
|
||||
35
demo/guide-python/sklearn_parallel.py
Normal file
35
demo/guide-python/sklearn_parallel.py
Normal file
@ -0,0 +1,35 @@
|
||||
import os
|
||||
|
||||
if __name__ == "__main__":
|
||||
# NOTE: on posix systems, this *has* to be here and in the
|
||||
# `__name__ == "__main__"` clause to run XGBoost in parallel processes
|
||||
# using fork, if XGBoost was built with OpenMP support. Otherwise, if you
|
||||
# build XGBoost without OpenMP support, you can use fork, which is the
|
||||
# default backend for joblib, and omit this.
|
||||
try:
|
||||
from multiprocessing import set_start_method
|
||||
except ImportError:
|
||||
raise ImportError("Unable to import multiprocessing.set_start_method."
|
||||
" This example only runs on Python 3.4")
|
||||
set_start_method("forkserver")
|
||||
|
||||
import numpy as np
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
from sklearn.datasets import load_boston
|
||||
import xgboost as xgb
|
||||
|
||||
rng = np.random.RandomState(31337)
|
||||
|
||||
print("Parallel Parameter optimization")
|
||||
boston = load_boston()
|
||||
|
||||
os.environ["OMP_NUM_THREADS"] = "2" # or to whatever you want
|
||||
y = boston['target']
|
||||
X = boston['data']
|
||||
xgb_model = xgb.XGBRegressor()
|
||||
clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6],
|
||||
'n_estimators': [50, 100, 200]}, verbose=1,
|
||||
n_jobs=2)
|
||||
clf.fit(X, y)
|
||||
print(clf.best_score_)
|
||||
print(clf.best_params_)
|
||||
Loading…
x
Reference in New Issue
Block a user