xgboost/demo/dask/sklearn_cpu_training.py
2019-09-25 01:30:14 -04:00

31 lines
904 B
Python

'''Dask interface demo:
Use scikit-learn regressor interface with CPU histogram tree method.'''
from dask.distributed import Client
from dask.distributed import LocalCluster
from dask import array as da
import xgboost
if __name__ == '__main__':
cluster = LocalCluster(n_workers=2, silence_logs=False) # or use any other clusters
client = Client(cluster)
n = 100
m = 10000
partition_size = 100
X = da.random.random((m, n), partition_size)
y = da.random.random(m, partition_size)
regressor = xgboost.dask.DaskXGBRegressor(verbosity=2, n_estimators=2)
regressor.set_params(tree_method='hist')
regressor.client = client
regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)
bst = regressor.get_booster()
history = regressor.evals_result()
print('Evaluation history:', history)
assert isinstance(prediction, da.Array)