'''Dask interface demo: Use scikit-learn regressor interface with CPU histogram tree method.''' from dask.distributed import Client from dask.distributed import LocalCluster from dask import array as da import xgboost if __name__ == '__main__': cluster = LocalCluster(n_workers=2, silence_logs=False) # or use any other clusters client = Client(cluster) n = 100 m = 10000 partition_size = 100 X = da.random.random((m, n), partition_size) y = da.random.random(m, partition_size) regressor = xgboost.dask.DaskXGBRegressor(verbosity=2, n_estimators=2) regressor.set_params(tree_method='hist') regressor.client = client regressor.fit(X, y, eval_set=[(X, y)]) prediction = regressor.predict(X) bst = regressor.get_booster() history = regressor.evals_result() print('Evaluation history:', history) assert isinstance(prediction, da.Array)