xgboost/R-package/R/xgb.cv.R
2014-12-30 16:22:24 +01:00

97 lines
3.8 KiB
R

#' Cross Validation
#'
#' The cross valudation function of xgboost
#'
#' @param params the list of parameters. Commonly used ones are:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:linear} linear regression
#' \item \code{binary:logistic} logistic regression for classification
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max.depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \url{https://github.com/tqchen/xgboost/wiki/Parameters} for
#' further details. See also demo/ for walkthrough example in R.
#' @param data takes an \code{xgb.DMatrix} as the input.
#' @param nrounds the max number of iterations
#' @param nfold number of folds used
#' @param label option field, when data is Matrix
#' @param showsd boolean, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in corss validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
#' \itemize{
#' \item \code{error} binary classification error rate
#' \item \code{rmse} Rooted mean square error
#' \item \code{logloss} negative log-likelihood function
#' \item \code{auc} Area under curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain,
#' @param feval custimized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain,
#' @param missing Missing is only used when input is dense matrix, pick a float
# value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param ... other parameters to pass to \code{params}.
#'
#' @details
#' This is the cross validation function for xgboost
#'
#' Parallelization is automatically enabled if OpenMP is present.
#' Number of threads can also be manually specified via "nthread" parameter.
#'
#' This function only accepts an \code{xgb.DMatrix} object as the input.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
#' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"),
#' "max.depth"=3, "eta"=1, "objective"="binary:logistic")
#' @export
#'
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NULL,
showsd = TRUE, metrics=list(), obj = NULL, feval = NULL, ...) {
if (typeof(params) != "list") {
stop("xgb.cv: first argument params must be list")
}
if (nfold <= 1) {
stop("nfold must be bigger than 1")
}
if (is.null(missing)) {
dtrain <- xgb.get.DMatrix(data, label)
} else {
dtrain <- xgb.get.DMatrix(data, label, missing)
}
params <- append(params, list(...))
params <- append(params, list(silent=1))
for (mc in metrics) {
params <- append(params, list("eval_metric"=mc))
}
folds <- xgb.cv.mknfold(dtrain, nfold, params)
history <- c()
for (i in 1:nrounds) {
msg <- list()
for (k in 1:nfold) {
fd <- folds[[k]]
succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj)
msg[[k]] <- strsplit(xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval),
"\t")[[1]]
}
ret <- xgb.cv.aggcv(msg, showsd)
history <- c(history, ret)
cat(paste(ret, "\n", sep=""))
}
return (history)
}
xgb.cv.strip.numeric <- function(x) {
as.numeric(strsplit(regmatches(x, regexec("test-(.*):(.*)$", x))[[1]][3], "\\+")[[1]])
}