#' Cross Validation #' #' The cross valudation function of xgboost #' #' @param params the list of parameters. Commonly used ones are: #' \itemize{ #' \item \code{objective} objective function, common ones are #' \itemize{ #' \item \code{reg:linear} linear regression #' \item \code{binary:logistic} logistic regression for classification #' } #' \item \code{eta} step size of each boosting step #' \item \code{max.depth} maximum depth of the tree #' \item \code{nthread} number of thread used in training, if not set, all threads are used #' } #' #' See \url{https://github.com/tqchen/xgboost/wiki/Parameters} for #' further details. See also demo/ for walkthrough example in R. #' @param data takes an \code{xgb.DMatrix} as the input. #' @param nrounds the max number of iterations #' @param nfold number of folds used #' @param label option field, when data is Matrix #' @param showsd boolean, whether show standard deviation of cross validation #' @param metrics, list of evaluation metrics to be used in corss validation, #' when it is not specified, the evaluation metric is chosen according to objective function. #' Possible options are: #' \itemize{ #' \item \code{error} binary classification error rate #' \item \code{rmse} Rooted mean square error #' \item \code{logloss} negative log-likelihood function #' \item \code{auc} Area under curve #' \item \code{merror} Exact matching error, used to evaluate multi-class classification #' } #' @param obj customized objective function. Returns gradient and second order #' gradient with given prediction and dtrain, #' @param feval custimized evaluation function. Returns #' \code{list(metric='metric-name', value='metric-value')} with given #' prediction and dtrain, #' @param missing Missing is only used when input is dense matrix, pick a float # value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values. #' @param ... other parameters to pass to \code{params}. #' #' @details #' This is the cross validation function for xgboost #' #' Parallelization is automatically enabled if OpenMP is present. #' Number of threads can also be manually specified via "nthread" parameter. #' #' This function only accepts an \code{xgb.DMatrix} object as the input. #' #' @examples #' data(agaricus.train, package='xgboost') #' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) #' history <- xgb.cv(data = dtrain, nround=3, nfold = 5, metrics=list("rmse","auc"), #' "max.depth"=3, "eta"=1, "objective"="binary:logistic") #' @export #' xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NULL, showsd = TRUE, metrics=list(), obj = NULL, feval = NULL, ...) { if (typeof(params) != "list") { stop("xgb.cv: first argument params must be list") } if (nfold <= 1) { stop("nfold must be bigger than 1") } if (is.null(missing)) { dtrain <- xgb.get.DMatrix(data, label) } else { dtrain <- xgb.get.DMatrix(data, label, missing) } params <- append(params, list(...)) params <- append(params, list(silent=1)) for (mc in metrics) { params <- append(params, list("eval_metric"=mc)) } folds <- xgb.cv.mknfold(dtrain, nfold, params) history <- c() for (i in 1:nrounds) { msg <- list() for (k in 1:nfold) { fd <- folds[[k]] succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj) msg[[k]] <- strsplit(xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval), "\t")[[1]] } ret <- xgb.cv.aggcv(msg, showsd) history <- c(history, ret) cat(paste(ret, "\n", sep="")) } return (history) } xgb.cv.strip.numeric <- function(x) { as.numeric(strsplit(regmatches(x, regexec("test-(.*):(.*)$", x))[[1]][3], "\\+")[[1]]) }