* [CI] Move lint to a separate script * [CI] Improved lintr launcher * Add lintr as a separate action * Add custom parsing logic to print out logs * Fix lintr issues in demos * Run R demos * Fix CRAN checks * Install XGBoost into R env before running lintr * Install devtools (needed to run demos)
21 lines
825 B
Markdown
21 lines
825 B
Markdown
XGBoost R Feature Walkthrough
|
|
====
|
|
* [Basic walkthrough of wrappers](basic_walkthrough.R)
|
|
* [Train a xgboost model from caret library](caret_wrapper.R)
|
|
* [Cutomize loss function, and evaluation metric](custom_objective.R)
|
|
* [Boosting from existing prediction](boost_from_prediction.R)
|
|
* [Predicting using first n trees](predict_first_ntree.R)
|
|
* [Generalized Linear Model](generalized_linear_model.R)
|
|
* [Cross validation](cross_validation.R)
|
|
* [Create a sparse matrix from a dense one](create_sparse_matrix.R)
|
|
* [Use GPU-accelerated tree building algorithms](gpu_accelerated.R)
|
|
|
|
Benchmarks
|
|
====
|
|
* [Starter script for Kaggle Higgs Boson](../../demo/kaggle-higgs)
|
|
|
|
Notes
|
|
====
|
|
* Contribution of examples, benchmarks is more than welcomed!
|
|
* If you like to share how you use xgboost to solve your problem, send a pull request :)
|