xgboost/CHANGES.md
2015-05-11 23:42:49 -07:00

37 lines
1.1 KiB
Markdown

Change Log
=====
xgboost-0.1
=====
* Initial release
xgboost-0.2x
=====
* Python module
* Weighted samples instances
* Initial version of pairwise rank
xgboost-0.3
=====
* Faster tree construction module
- Allows subsample columns during tree construction via ```bst:col_samplebytree=ratio```
* Support for boosting from initial predictions
* Experimental version of LambdaRank
* Linear booster is now parallelized, using parallel coordinated descent.
* Add [Code Guide](src/README.md) for customizing objective function and evaluation
* Add R module
xgboost-0.4
=====
* Distributed version of xgboost that runs on YARN, scales to billions of examples
* Direct save/load data and model from/to S3 and HDFS
* Feature importance visualization in R module, by Michael Benesty
* Predict leaf index
* Poisson regression for counts data
* Early stopping option in training
* Native save load support in R and python
- xgboost models now can be saved using save/load in R
- xgboost python model is now pickable
* sklearn wrapper is supported in python module
* Experimental External memory version