293 lines
10 KiB
C++
293 lines
10 KiB
C++
/*!
|
|
* Copyright by Contributors
|
|
* \file gblinear-inl.hpp
|
|
* \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net
|
|
* the update rule is parallel coordinate descent (shotgun)
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_GBM_GBLINEAR_INL_HPP_
|
|
#define XGBOOST_GBM_GBLINEAR_INL_HPP_
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
#include "./gbm.h"
|
|
#include "../tree/updater.h"
|
|
|
|
namespace xgboost {
|
|
namespace gbm {
|
|
/*!
|
|
* \brief gradient boosted linear model
|
|
* \tparam FMatrix the data type updater taking
|
|
*/
|
|
class GBLinear : public IGradBooster {
|
|
public:
|
|
virtual ~GBLinear(void) {
|
|
}
|
|
// set model parameters
|
|
virtual void SetParam(const char *name, const char *val) {
|
|
using namespace std;
|
|
if (!strncmp(name, "bst:", 4)) {
|
|
param.SetParam(name + 4, val);
|
|
}
|
|
if (model.weight.size() == 0) {
|
|
model.param.SetParam(name, val);
|
|
}
|
|
}
|
|
virtual void LoadModel(utils::IStream &fi, bool with_pbuffer) { // NOLINT(*)
|
|
model.LoadModel(fi);
|
|
}
|
|
virtual void SaveModel(utils::IStream &fo, bool with_pbuffer) const { // NOLINT(*)
|
|
model.SaveModel(fo);
|
|
}
|
|
virtual void InitModel(void) {
|
|
model.InitModel();
|
|
}
|
|
virtual void DoBoost(IFMatrix *p_fmat,
|
|
int64_t buffer_offset,
|
|
const BoosterInfo &info,
|
|
std::vector<bst_gpair> *in_gpair) {
|
|
std::vector<bst_gpair> &gpair = *in_gpair;
|
|
const int ngroup = model.param.num_output_group;
|
|
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
|
|
// for all the output group
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
double sum_grad = 0.0, sum_hess = 0.0;
|
|
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
|
|
#pragma omp parallel for schedule(static) reduction(+: sum_grad, sum_hess)
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
bst_gpair &p = gpair[rowset[i] * ngroup + gid];
|
|
if (p.hess >= 0.0f) {
|
|
sum_grad += p.grad; sum_hess += p.hess;
|
|
}
|
|
}
|
|
// remove bias effect
|
|
bst_float dw = static_cast<bst_float>(
|
|
param.learning_rate * param.CalcDeltaBias(sum_grad, sum_hess, model.bias()[gid]));
|
|
model.bias()[gid] += dw;
|
|
// update grad value
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
bst_gpair &p = gpair[rowset[i] * ngroup + gid];
|
|
if (p.hess >= 0.0f) {
|
|
p.grad += p.hess * dw;
|
|
}
|
|
}
|
|
}
|
|
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator();
|
|
while (iter->Next()) {
|
|
// number of features
|
|
const ColBatch &batch = iter->Value();
|
|
const bst_omp_uint nfeat = static_cast<bst_omp_uint>(batch.size);
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nfeat; ++i) {
|
|
const bst_uint fid = batch.col_index[i];
|
|
ColBatch::Inst col = batch[i];
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
double sum_grad = 0.0, sum_hess = 0.0;
|
|
for (bst_uint j = 0; j < col.length; ++j) {
|
|
const float v = col[j].fvalue;
|
|
bst_gpair &p = gpair[col[j].index * ngroup + gid];
|
|
if (p.hess < 0.0f) continue;
|
|
sum_grad += p.grad * v;
|
|
sum_hess += p.hess * v * v;
|
|
}
|
|
float &w = model[fid][gid];
|
|
bst_float dw = static_cast<bst_float>(param.learning_rate *
|
|
param.CalcDelta(sum_grad, sum_hess, w));
|
|
w += dw;
|
|
// update grad value
|
|
for (bst_uint j = 0; j < col.length; ++j) {
|
|
bst_gpair &p = gpair[col[j].index * ngroup + gid];
|
|
if (p.hess < 0.0f) continue;
|
|
p.grad += p.hess * col[j].fvalue * dw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void Predict(IFMatrix *p_fmat,
|
|
int64_t buffer_offset,
|
|
const BoosterInfo &info,
|
|
std::vector<float> *out_preds,
|
|
unsigned ntree_limit = 0) {
|
|
utils::Check(ntree_limit == 0,
|
|
"GBLinear::Predict ntrees is only valid for gbtree predictor");
|
|
std::vector<float> &preds = *out_preds;
|
|
preds.resize(0);
|
|
// start collecting the prediction
|
|
utils::IIterator<RowBatch> *iter = p_fmat->RowIterator();
|
|
const int ngroup = model.param.num_output_group;
|
|
while (iter->Next()) {
|
|
const RowBatch &batch = iter->Value();
|
|
utils::Assert(batch.base_rowid * ngroup == preds.size(),
|
|
"base_rowid is not set correctly");
|
|
// output convention: nrow * k, where nrow is number of rows
|
|
// k is number of group
|
|
preds.resize(preds.size() + batch.size * ngroup);
|
|
// parallel over local batch
|
|
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
|
const size_t ridx = batch.base_rowid + i;
|
|
// loop over output groups
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
this->Pred(batch[i], &preds[ridx * ngroup]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
virtual void Predict(const SparseBatch::Inst &inst,
|
|
std::vector<float> *out_preds,
|
|
unsigned ntree_limit,
|
|
unsigned root_index) {
|
|
const int ngroup = model.param.num_output_group;
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
this->Pred(inst, BeginPtr(*out_preds));
|
|
}
|
|
}
|
|
virtual void PredictLeaf(IFMatrix *p_fmat,
|
|
const BoosterInfo &info,
|
|
std::vector<float> *out_preds,
|
|
unsigned ntree_limit = 0) {
|
|
utils::Error("gblinear does not support predict leaf index");
|
|
}
|
|
virtual std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) {
|
|
std::stringstream fo("");
|
|
fo << "bias:\n";
|
|
for (int i = 0; i < model.param.num_output_group; ++i) {
|
|
fo << model.bias()[i] << std::endl;
|
|
}
|
|
fo << "weight:\n";
|
|
for (int i = 0; i < model.param.num_output_group; ++i) {
|
|
for (unsigned j = 0; j <model.param.num_feature; ++j) {
|
|
fo << model[i][j] << std::endl;
|
|
}
|
|
}
|
|
std::vector<std::string> v;
|
|
v.push_back(fo.str());
|
|
return v;
|
|
}
|
|
|
|
protected:
|
|
inline void Pred(const RowBatch::Inst &inst, float *preds) {
|
|
for (int gid = 0; gid < model.param.num_output_group; ++gid) {
|
|
float psum = model.bias()[gid];
|
|
for (bst_uint i = 0; i < inst.length; ++i) {
|
|
if (inst[i].index >= model.param.num_feature) continue;
|
|
psum += inst[i].fvalue * model[inst[i].index][gid];
|
|
}
|
|
preds[gid] = psum;
|
|
}
|
|
}
|
|
// training parameter
|
|
struct ParamTrain {
|
|
/*! \brief learning_rate */
|
|
float learning_rate;
|
|
/*! \brief regularization weight for L2 norm */
|
|
float reg_lambda;
|
|
/*! \brief regularization weight for L1 norm */
|
|
float reg_alpha;
|
|
/*! \brief regularization weight for L2 norm in bias */
|
|
float reg_lambda_bias;
|
|
// parameter
|
|
ParamTrain(void) {
|
|
reg_alpha = 0.0f;
|
|
reg_lambda = 0.0f;
|
|
reg_lambda_bias = 0.0f;
|
|
learning_rate = 1.0f;
|
|
}
|
|
inline void SetParam(const char *name, const char *val) {
|
|
using namespace std;
|
|
// sync-names
|
|
if (!strcmp("eta", name)) learning_rate = static_cast<float>(atof(val));
|
|
if (!strcmp("lambda", name)) reg_lambda = static_cast<float>(atof(val));
|
|
if (!strcmp( "alpha", name)) reg_alpha = static_cast<float>(atof(val));
|
|
if (!strcmp( "lambda_bias", name)) reg_lambda_bias = static_cast<float>(atof(val));
|
|
// real names
|
|
if (!strcmp( "learning_rate", name)) learning_rate = static_cast<float>(atof(val));
|
|
if (!strcmp( "reg_lambda", name)) reg_lambda = static_cast<float>(atof(val));
|
|
if (!strcmp( "reg_alpha", name)) reg_alpha = static_cast<float>(atof(val));
|
|
if (!strcmp( "reg_lambda_bias", name)) reg_lambda_bias = static_cast<float>(atof(val));
|
|
}
|
|
// given original weight calculate delta
|
|
inline double CalcDelta(double sum_grad, double sum_hess, double w) {
|
|
if (sum_hess < 1e-5f) return 0.0f;
|
|
double tmp = w - (sum_grad + reg_lambda * w) / (sum_hess + reg_lambda);
|
|
if (tmp >=0) {
|
|
return std::max(-(sum_grad + reg_lambda * w + reg_alpha) / (sum_hess + reg_lambda), -w);
|
|
} else {
|
|
return std::min(-(sum_grad + reg_lambda * w - reg_alpha) / (sum_hess + reg_lambda), -w);
|
|
}
|
|
}
|
|
// given original weight calculate delta bias
|
|
inline double CalcDeltaBias(double sum_grad, double sum_hess, double w) {
|
|
return - (sum_grad + reg_lambda_bias * w) / (sum_hess + reg_lambda_bias);
|
|
}
|
|
};
|
|
// model for linear booster
|
|
class Model {
|
|
public:
|
|
// model parameter
|
|
struct Param {
|
|
// number of feature dimension
|
|
unsigned num_feature;
|
|
// number of output group
|
|
int num_output_group;
|
|
// reserved field
|
|
int reserved[32];
|
|
// constructor
|
|
Param(void) {
|
|
num_feature = 0;
|
|
num_output_group = 1;
|
|
std::memset(reserved, 0, sizeof(reserved));
|
|
}
|
|
inline void SetParam(const char *name, const char *val) {
|
|
using namespace std;
|
|
if (!strcmp(name, "bst:num_feature")) num_feature = static_cast<unsigned>(atoi(val));
|
|
if (!strcmp(name, "num_output_group")) num_output_group = atoi(val);
|
|
}
|
|
};
|
|
// parameter
|
|
Param param;
|
|
// weight for each of feature, bias is the last one
|
|
std::vector<float> weight;
|
|
// initialize the model parameter
|
|
inline void InitModel(void) {
|
|
// bias is the last weight
|
|
weight.resize((param.num_feature + 1) * param.num_output_group);
|
|
std::fill(weight.begin(), weight.end(), 0.0f);
|
|
}
|
|
// save the model to file
|
|
inline void SaveModel(utils::IStream &fo) const { // NOLINT(*)
|
|
fo.Write(¶m, sizeof(Param));
|
|
fo.Write(weight);
|
|
}
|
|
// load model from file
|
|
inline void LoadModel(utils::IStream &fi) { // NOLINT(*)
|
|
utils::Assert(fi.Read(¶m, sizeof(Param)) != 0, "Load LinearBooster");
|
|
fi.Read(&weight);
|
|
}
|
|
// model bias
|
|
inline float* bias(void) {
|
|
return &weight[param.num_feature * param.num_output_group];
|
|
}
|
|
// get i-th weight
|
|
inline float* operator[](size_t i) {
|
|
return &weight[i * param.num_output_group];
|
|
}
|
|
};
|
|
// model field
|
|
Model model;
|
|
// training parameter
|
|
ParamTrain param;
|
|
// Per feature: shuffle index of each feature index
|
|
std::vector<bst_uint> feat_index;
|
|
};
|
|
|
|
} // namespace gbm
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_GBM_GBLINEAR_INL_HPP_
|