/*! * Copyright by Contributors * \file gblinear-inl.hpp * \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net * the update rule is parallel coordinate descent (shotgun) * \author Tianqi Chen */ #ifndef XGBOOST_GBM_GBLINEAR_INL_HPP_ #define XGBOOST_GBM_GBLINEAR_INL_HPP_ #include #include #include #include #include "./gbm.h" #include "../tree/updater.h" namespace xgboost { namespace gbm { /*! * \brief gradient boosted linear model * \tparam FMatrix the data type updater taking */ class GBLinear : public IGradBooster { public: virtual ~GBLinear(void) { } // set model parameters virtual void SetParam(const char *name, const char *val) { using namespace std; if (!strncmp(name, "bst:", 4)) { param.SetParam(name + 4, val); } if (model.weight.size() == 0) { model.param.SetParam(name, val); } } virtual void LoadModel(utils::IStream &fi, bool with_pbuffer) { // NOLINT(*) model.LoadModel(fi); } virtual void SaveModel(utils::IStream &fo, bool with_pbuffer) const { // NOLINT(*) model.SaveModel(fo); } virtual void InitModel(void) { model.InitModel(); } virtual void DoBoost(IFMatrix *p_fmat, int64_t buffer_offset, const BoosterInfo &info, std::vector *in_gpair) { std::vector &gpair = *in_gpair; const int ngroup = model.param.num_output_group; const std::vector &rowset = p_fmat->buffered_rowset(); // for all the output group for (int gid = 0; gid < ngroup; ++gid) { double sum_grad = 0.0, sum_hess = 0.0; const bst_omp_uint ndata = static_cast(rowset.size()); #pragma omp parallel for schedule(static) reduction(+: sum_grad, sum_hess) for (bst_omp_uint i = 0; i < ndata; ++i) { bst_gpair &p = gpair[rowset[i] * ngroup + gid]; if (p.hess >= 0.0f) { sum_grad += p.grad; sum_hess += p.hess; } } // remove bias effect bst_float dw = static_cast( param.learning_rate * param.CalcDeltaBias(sum_grad, sum_hess, model.bias()[gid])); model.bias()[gid] += dw; // update grad value #pragma omp parallel for schedule(static) for (bst_omp_uint i = 0; i < ndata; ++i) { bst_gpair &p = gpair[rowset[i] * ngroup + gid]; if (p.hess >= 0.0f) { p.grad += p.hess * dw; } } } utils::IIterator *iter = p_fmat->ColIterator(); while (iter->Next()) { // number of features const ColBatch &batch = iter->Value(); const bst_omp_uint nfeat = static_cast(batch.size); #pragma omp parallel for schedule(static) for (bst_omp_uint i = 0; i < nfeat; ++i) { const bst_uint fid = batch.col_index[i]; ColBatch::Inst col = batch[i]; for (int gid = 0; gid < ngroup; ++gid) { double sum_grad = 0.0, sum_hess = 0.0; for (bst_uint j = 0; j < col.length; ++j) { const float v = col[j].fvalue; bst_gpair &p = gpair[col[j].index * ngroup + gid]; if (p.hess < 0.0f) continue; sum_grad += p.grad * v; sum_hess += p.hess * v * v; } float &w = model[fid][gid]; bst_float dw = static_cast(param.learning_rate * param.CalcDelta(sum_grad, sum_hess, w)); w += dw; // update grad value for (bst_uint j = 0; j < col.length; ++j) { bst_gpair &p = gpair[col[j].index * ngroup + gid]; if (p.hess < 0.0f) continue; p.grad += p.hess * col[j].fvalue * dw; } } } } } virtual void Predict(IFMatrix *p_fmat, int64_t buffer_offset, const BoosterInfo &info, std::vector *out_preds, unsigned ntree_limit = 0) { utils::Check(ntree_limit == 0, "GBLinear::Predict ntrees is only valid for gbtree predictor"); std::vector &preds = *out_preds; preds.resize(0); // start collecting the prediction utils::IIterator *iter = p_fmat->RowIterator(); const int ngroup = model.param.num_output_group; while (iter->Next()) { const RowBatch &batch = iter->Value(); utils::Assert(batch.base_rowid * ngroup == preds.size(), "base_rowid is not set correctly"); // output convention: nrow * k, where nrow is number of rows // k is number of group preds.resize(preds.size() + batch.size * ngroup); // parallel over local batch const bst_omp_uint nsize = static_cast(batch.size); #pragma omp parallel for schedule(static) for (bst_omp_uint i = 0; i < nsize; ++i) { const size_t ridx = batch.base_rowid + i; // loop over output groups for (int gid = 0; gid < ngroup; ++gid) { this->Pred(batch[i], &preds[ridx * ngroup]); } } } } virtual void Predict(const SparseBatch::Inst &inst, std::vector *out_preds, unsigned ntree_limit, unsigned root_index) { const int ngroup = model.param.num_output_group; for (int gid = 0; gid < ngroup; ++gid) { this->Pred(inst, BeginPtr(*out_preds)); } } virtual void PredictLeaf(IFMatrix *p_fmat, const BoosterInfo &info, std::vector *out_preds, unsigned ntree_limit = 0) { utils::Error("gblinear does not support predict leaf index"); } virtual std::vector DumpModel(const utils::FeatMap& fmap, int option) { std::stringstream fo(""); fo << "bias:\n"; for (int i = 0; i < model.param.num_output_group; ++i) { fo << model.bias()[i] << std::endl; } fo << "weight:\n"; for (int i = 0; i < model.param.num_output_group; ++i) { for (unsigned j = 0; j v; v.push_back(fo.str()); return v; } protected: inline void Pred(const RowBatch::Inst &inst, float *preds) { for (int gid = 0; gid < model.param.num_output_group; ++gid) { float psum = model.bias()[gid]; for (bst_uint i = 0; i < inst.length; ++i) { if (inst[i].index >= model.param.num_feature) continue; psum += inst[i].fvalue * model[inst[i].index][gid]; } preds[gid] = psum; } } // training parameter struct ParamTrain { /*! \brief learning_rate */ float learning_rate; /*! \brief regularization weight for L2 norm */ float reg_lambda; /*! \brief regularization weight for L1 norm */ float reg_alpha; /*! \brief regularization weight for L2 norm in bias */ float reg_lambda_bias; // parameter ParamTrain(void) { reg_alpha = 0.0f; reg_lambda = 0.0f; reg_lambda_bias = 0.0f; learning_rate = 1.0f; } inline void SetParam(const char *name, const char *val) { using namespace std; // sync-names if (!strcmp("eta", name)) learning_rate = static_cast(atof(val)); if (!strcmp("lambda", name)) reg_lambda = static_cast(atof(val)); if (!strcmp( "alpha", name)) reg_alpha = static_cast(atof(val)); if (!strcmp( "lambda_bias", name)) reg_lambda_bias = static_cast(atof(val)); // real names if (!strcmp( "learning_rate", name)) learning_rate = static_cast(atof(val)); if (!strcmp( "reg_lambda", name)) reg_lambda = static_cast(atof(val)); if (!strcmp( "reg_alpha", name)) reg_alpha = static_cast(atof(val)); if (!strcmp( "reg_lambda_bias", name)) reg_lambda_bias = static_cast(atof(val)); } // given original weight calculate delta inline double CalcDelta(double sum_grad, double sum_hess, double w) { if (sum_hess < 1e-5f) return 0.0f; double tmp = w - (sum_grad + reg_lambda * w) / (sum_hess + reg_lambda); if (tmp >=0) { return std::max(-(sum_grad + reg_lambda * w + reg_alpha) / (sum_hess + reg_lambda), -w); } else { return std::min(-(sum_grad + reg_lambda * w - reg_alpha) / (sum_hess + reg_lambda), -w); } } // given original weight calculate delta bias inline double CalcDeltaBias(double sum_grad, double sum_hess, double w) { return - (sum_grad + reg_lambda_bias * w) / (sum_hess + reg_lambda_bias); } }; // model for linear booster class Model { public: // model parameter struct Param { // number of feature dimension unsigned num_feature; // number of output group int num_output_group; // reserved field int reserved[32]; // constructor Param(void) { num_feature = 0; num_output_group = 1; std::memset(reserved, 0, sizeof(reserved)); } inline void SetParam(const char *name, const char *val) { using namespace std; if (!strcmp(name, "bst:num_feature")) num_feature = static_cast(atoi(val)); if (!strcmp(name, "num_output_group")) num_output_group = atoi(val); } }; // parameter Param param; // weight for each of feature, bias is the last one std::vector weight; // initialize the model parameter inline void InitModel(void) { // bias is the last weight weight.resize((param.num_feature + 1) * param.num_output_group); std::fill(weight.begin(), weight.end(), 0.0f); } // save the model to file inline void SaveModel(utils::IStream &fo) const { // NOLINT(*) fo.Write(¶m, sizeof(Param)); fo.Write(weight); } // load model from file inline void LoadModel(utils::IStream &fi) { // NOLINT(*) utils::Assert(fi.Read(¶m, sizeof(Param)) != 0, "Load LinearBooster"); fi.Read(&weight); } // model bias inline float* bias(void) { return &weight[param.num_feature * param.num_output_group]; } // get i-th weight inline float* operator[](size_t i) { return &weight[i * param.num_output_group]; } }; // model field Model model; // training parameter ParamTrain param; // Per feature: shuffle index of each feature index std::vector feat_index; }; } // namespace gbm } // namespace xgboost #endif // XGBOOST_GBM_GBLINEAR_INL_HPP_