Adam Pocock a448a8320c [jvm-packages] Fixing the NativeLibLoader on Java 9+ (#4351)
The old NativeLibLoader had a short-circuit load path which modified
java.library.path and attempted to load the xgboost library from outside
the jar first, falling back to loading the library from inside the jar.
This path is a no-op every time when using XGBoost outside of it's
source tree. Additionally it triggers an illegal reflective access
warning in the module system in 9, 10, and 11.

On Java 12 the ClassLoader fields are not accessible via reflection
(separately from the illegal reflective acces warning), and so it fails
in a way that isn't caught by the code which falls back to loading the
library from inside the jar.

This commit removes that code path and always loads the xgboost library
from inside the jar file as it's a valid technique across multiple JVM
implementations and works with all versions of Java.
2019-04-10 12:41:44 -07:00
2019-03-08 12:22:12 +13:00
2019-04-08 11:22:03 +12:00
2019-02-18 22:16:58 +08:00
2019-04-10 19:21:26 +08:00
2019-04-10 19:21:26 +08:00
2019-03-13 02:25:51 +08:00
2018-07-10 00:42:15 -07:00
2019-03-20 12:56:04 +13:00
2019-02-19 14:09:10 -08:00
2017-12-01 02:58:13 -08:00
2019-04-05 10:45:23 -07:00
2018-12-12 08:23:20 -06:00
2019-03-04 18:14:36 -08:00
2019-04-08 21:20:15 -07:00

eXtreme Gradient Boosting

Build Status Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%