xgboost/R-package/R/xgb.save.R
Vadim Khotilovich a375ad2822 [R] maintenance Apr 2017 (#2237)
* [R] make sure things work for a single split model; fixes #2191

* [R] add option use_int_id to xgb.model.dt.tree

* [R] add example of exporting tree plot to a file

* [R] set save_period = NULL as default in xgboost() to be the same as in xgb.train; fixes #2182

* [R] it's a good practice after CRAN releases to bump up package version in dev

* [R] allow xgb.DMatrix construction from integer dense matrices

* [R] xgb.DMatrix: silent parameter; improve documentation

* [R] xgb.model.dt.tree code style changes

* [R] update NEWS with parameter changes

* [R] code safety & style; handle non-strict matrix and inherited classes of input and model; fixes #2242

* [R] change to x.y.z.p R-package versioning scheme and set version to 0.6.4.3

* [R] add an R package versioning section to the contributors guide

* [R] R-package/README.md: clean up the redundant old installation instructions, link the contributors guide
2017-05-01 22:51:34 -07:00

43 lines
1.7 KiB
R

#' Save xgboost model to binary file
#'
#' Save xgboost model to a file in binary format.
#'
#' @param model model object of \code{xgb.Booster} class.
#' @param fname name of the file to write.
#'
#' @details
#' This methods allows to save a model in an xgboost-internal binary format which is universal
#' among the various xgboost interfaces. In R, the saved model file could be read-in later
#' using either the \code{\link{xgb.load}} function or the \code{xgb_model} parameter
#' of \code{\link{xgb.train}}.
#'
#' Note: a model can also be saved as an R-object (e.g., by using \code{\link[base]{readRDS}}
#' or \code{\link[base]{save}}). However, it would then only be compatible with R, and
#' corresponding R-methods would need to be used to load it.
#'
#' @seealso
#' \code{\link{xgb.load}}, \code{\link{xgb.Booster.complete}}.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model')
#' pred <- predict(bst, test$data)
#' @export
xgb.save <- function(model, fname) {
if (typeof(fname) != "character")
stop("fname must be character")
if (!inherits(model, "xgb.Booster")) {
stop("model must be xgb.Booster.",
if (inherits(model, "xgb.DMatrix")) " Use xgb.DMatrix.save to save an xgb.DMatrix object." else "")
}
model <- xgb.Booster.complete(model, saveraw = FALSE)
.Call("XGBoosterSaveModel_R", model$handle, fname[1], PACKAGE = "xgboost")
return(TRUE)
}