* Group aware GPU weighted sketching. * Distribute group weights to each data point. * Relax the test. * Validate input meta info. * Fix metainfo copy ctor.
477 lines
20 KiB
Plaintext
477 lines
20 KiB
Plaintext
/*!
|
|
* Copyright 2018 XGBoost contributors
|
|
*/
|
|
|
|
#include <xgboost/logging.h>
|
|
|
|
#include <thrust/copy.h>
|
|
#include <thrust/functional.h>
|
|
#include <thrust/iterator/counting_iterator.h>
|
|
#include <thrust/iterator/transform_iterator.h>
|
|
#include <thrust/reduce.h>
|
|
#include <thrust/sort.h>
|
|
#include <thrust/binary_search.h>
|
|
#include <thrust/execution_policy.h>
|
|
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "../data/adapter.h"
|
|
#include "../data/device_adapter.cuh"
|
|
#include "device_helpers.cuh"
|
|
#include "hist_util.h"
|
|
#include "math.h" // NOLINT
|
|
#include "quantile.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
using WQSketch = DenseCuts::WQSketch;
|
|
using SketchEntry = WQSketch::Entry;
|
|
|
|
/*!
|
|
* \brief A container that holds the device sketches across all
|
|
* sparse page batches which are distributed to different devices.
|
|
* As sketches are aggregated by column, the mutex guards
|
|
* multiple devices pushing sketch summary for the same column
|
|
* across distinct rows.
|
|
*/
|
|
struct SketchContainer {
|
|
std::vector<DenseCuts::WQSketch> sketches_; // NOLINT
|
|
static constexpr int kOmpNumColsParallelizeLimit = 1000;
|
|
|
|
SketchContainer(int max_bin, size_t num_columns, size_t num_rows) {
|
|
// Initialize Sketches for this dmatrix
|
|
sketches_.resize(num_columns);
|
|
#pragma omp parallel for schedule(static) if (num_columns > kOmpNumColsParallelizeLimit) // NOLINT
|
|
for (int icol = 0; icol < num_columns; ++icol) { // NOLINT
|
|
sketches_[icol].Init(num_rows, 1.0 / (8 * max_bin));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Pushes cuts to the sketches.
|
|
*
|
|
* \param entries_per_column The entries per column.
|
|
* \param entries Vector of cuts from all columns, length
|
|
* entries_per_column * num_columns. \param column_scan Exclusive scan
|
|
* of column sizes. Used to detect cases where there are fewer entries than we
|
|
* have storage for.
|
|
*/
|
|
void Push(size_t entries_per_column,
|
|
const thrust::host_vector<SketchEntry>& entries,
|
|
const thrust::host_vector<size_t>& column_scan) {
|
|
#pragma omp parallel for schedule(static) if (sketches_.size() > SketchContainer::kOmpNumColsParallelizeLimit) // NOLINT
|
|
for (int icol = 0; icol < sketches_.size(); ++icol) {
|
|
size_t column_size = column_scan[icol + 1] - column_scan[icol];
|
|
if (column_size == 0) continue;
|
|
WQuantileSketch<bst_float, bst_float>::SummaryContainer summary;
|
|
size_t num_available_cuts =
|
|
std::min(size_t(entries_per_column), column_size);
|
|
summary.Reserve(num_available_cuts);
|
|
summary.MakeFromSorted(&entries[entries_per_column * icol],
|
|
num_available_cuts);
|
|
|
|
sketches_[icol].PushSummary(summary);
|
|
}
|
|
}
|
|
|
|
// Prevent copying/assigning/moving this as its internals can't be
|
|
// assigned/copied/moved
|
|
SketchContainer(const SketchContainer&) = delete;
|
|
SketchContainer(const SketchContainer&&) = delete;
|
|
SketchContainer& operator=(const SketchContainer&) = delete;
|
|
SketchContainer& operator=(const SketchContainer&&) = delete;
|
|
};
|
|
|
|
struct EntryCompareOp {
|
|
__device__ bool operator()(const Entry& a, const Entry& b) {
|
|
if (a.index == b.index) {
|
|
return a.fvalue < b.fvalue;
|
|
}
|
|
return a.index < b.index;
|
|
}
|
|
};
|
|
|
|
// Compute number of sample cuts needed on local node to maintain accuracy
|
|
// We take more cuts than needed and then reduce them later
|
|
size_t RequiredSampleCuts(int max_bins, size_t num_rows) {
|
|
constexpr int kFactor = 8;
|
|
double eps = 1.0 / (kFactor * max_bins);
|
|
size_t dummy_nlevel;
|
|
size_t num_cuts;
|
|
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
|
|
num_rows, eps, &dummy_nlevel, &num_cuts);
|
|
return std::min(num_cuts, num_rows);
|
|
}
|
|
|
|
|
|
// Count the entries in each column and exclusive scan
|
|
void GetColumnSizesScan(int device,
|
|
dh::caching_device_vector<size_t>* column_sizes_scan,
|
|
Span<const Entry> entries, size_t num_columns) {
|
|
column_sizes_scan->resize(num_columns + 1, 0);
|
|
auto d_column_sizes_scan = column_sizes_scan->data().get();
|
|
auto d_entries = entries.data();
|
|
dh::LaunchN(device, entries.size(), [=] __device__(size_t idx) {
|
|
auto& e = d_entries[idx];
|
|
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
|
|
&d_column_sizes_scan[e.index]),
|
|
static_cast<unsigned long long>(1)); // NOLINT
|
|
});
|
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
|
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan->begin(),
|
|
column_sizes_scan->end(), column_sizes_scan->begin());
|
|
}
|
|
|
|
/**
|
|
* \brief Extracts the cuts from sorted data.
|
|
*
|
|
* \param device The device.
|
|
* \param cuts Output cuts
|
|
* \param num_cuts_per_feature Number of cuts per feature.
|
|
* \param sorted_data Sorted entries in segments of columns
|
|
* \param column_sizes_scan Describes the boundaries of column segments in
|
|
* sorted data
|
|
*/
|
|
void ExtractCuts(int device,
|
|
size_t num_cuts_per_feature,
|
|
Span<Entry const> sorted_data,
|
|
Span<size_t const> column_sizes_scan,
|
|
Span<SketchEntry> out_cuts) {
|
|
dh::LaunchN(device, out_cuts.size(), [=] __device__(size_t idx) {
|
|
// Each thread is responsible for obtaining one cut from the sorted input
|
|
size_t column_idx = idx / num_cuts_per_feature;
|
|
size_t column_size =
|
|
column_sizes_scan[column_idx + 1] - column_sizes_scan[column_idx];
|
|
size_t num_available_cuts =
|
|
min(static_cast<size_t>(num_cuts_per_feature), column_size);
|
|
size_t cut_idx = idx % num_cuts_per_feature;
|
|
if (cut_idx >= num_available_cuts) return;
|
|
Span<Entry const> column_entries =
|
|
sorted_data.subspan(column_sizes_scan[column_idx], column_size);
|
|
size_t rank = (column_entries.size() * cut_idx) /
|
|
static_cast<float>(num_available_cuts);
|
|
out_cuts[idx] = WQSketch::Entry(rank, rank + 1, 1,
|
|
column_entries[rank].fvalue);
|
|
});
|
|
}
|
|
|
|
/**
|
|
* \brief Extracts the cuts from sorted data, considering weights.
|
|
*
|
|
* \param device The device.
|
|
* \param cuts Output cuts.
|
|
* \param num_cuts_per_feature Number of cuts per feature.
|
|
* \param sorted_data Sorted entries in segments of columns.
|
|
* \param weights_scan Inclusive scan of weights for each entry in sorted_data.
|
|
* \param column_sizes_scan Describes the boundaries of column segments in sorted data.
|
|
*/
|
|
void ExtractWeightedCuts(int device,
|
|
size_t num_cuts_per_feature,
|
|
Span<Entry> sorted_data,
|
|
Span<float> weights_scan,
|
|
Span<size_t> column_sizes_scan,
|
|
Span<SketchEntry> cuts) {
|
|
dh::LaunchN(device, cuts.size(), [=] __device__(size_t idx) {
|
|
// Each thread is responsible for obtaining one cut from the sorted input
|
|
size_t column_idx = idx / num_cuts_per_feature;
|
|
size_t column_size =
|
|
column_sizes_scan[column_idx + 1] - column_sizes_scan[column_idx];
|
|
size_t num_available_cuts =
|
|
min(static_cast<size_t>(num_cuts_per_feature), column_size);
|
|
size_t cut_idx = idx % num_cuts_per_feature;
|
|
if (cut_idx >= num_available_cuts) return;
|
|
Span<Entry> column_entries =
|
|
sorted_data.subspan(column_sizes_scan[column_idx], column_size);
|
|
|
|
Span<float> column_weights_scan =
|
|
weights_scan.subspan(column_sizes_scan[column_idx], column_size);
|
|
float total_column_weight = column_weights_scan.back();
|
|
size_t sample_idx = 0;
|
|
if (cut_idx == 0) {
|
|
// First cut
|
|
sample_idx = 0;
|
|
} else if (cut_idx == num_available_cuts) {
|
|
// Last cut
|
|
sample_idx = column_entries.size() - 1;
|
|
} else if (num_available_cuts == column_size) {
|
|
// There are less samples available than our buffer
|
|
// Take every available sample
|
|
sample_idx = cut_idx;
|
|
} else {
|
|
bst_float rank = (total_column_weight * cut_idx) /
|
|
static_cast<float>(num_available_cuts);
|
|
sample_idx = thrust::upper_bound(thrust::seq,
|
|
column_weights_scan.begin(),
|
|
column_weights_scan.end(),
|
|
rank) -
|
|
column_weights_scan.begin();
|
|
sample_idx =
|
|
max(static_cast<size_t>(0),
|
|
min(sample_idx, column_entries.size() - 1));
|
|
}
|
|
// repeated values will be filtered out on the CPU
|
|
bst_float rmin = sample_idx > 0 ? column_weights_scan[sample_idx - 1] : 0.0f;
|
|
bst_float rmax = column_weights_scan[sample_idx];
|
|
cuts[idx] = WQSketch::Entry(rmin, rmax, rmax - rmin,
|
|
column_entries[sample_idx].fvalue);
|
|
});
|
|
}
|
|
|
|
void ProcessBatch(int device, const SparsePage& page, size_t begin, size_t end,
|
|
SketchContainer* sketch_container, int num_cuts,
|
|
size_t num_columns) {
|
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
|
const auto& host_data = page.data.ConstHostVector();
|
|
dh::caching_device_vector<Entry> sorted_entries(host_data.begin() + begin,
|
|
host_data.begin() + end);
|
|
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
|
|
sorted_entries.end(), EntryCompareOp());
|
|
|
|
dh::caching_device_vector<size_t> column_sizes_scan;
|
|
GetColumnSizesScan(device, &column_sizes_scan,
|
|
{sorted_entries.data().get(), sorted_entries.size()},
|
|
num_columns);
|
|
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
|
|
|
|
dh::caching_device_vector<SketchEntry> cuts(num_columns * num_cuts);
|
|
ExtractCuts(device, num_cuts,
|
|
dh::ToSpan(sorted_entries),
|
|
dh::ToSpan(column_sizes_scan),
|
|
dh::ToSpan(cuts));
|
|
|
|
// add cuts into sketches
|
|
thrust::host_vector<SketchEntry> host_cuts(cuts);
|
|
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
|
|
}
|
|
|
|
void ProcessWeightedBatch(int device, const SparsePage& page,
|
|
Span<const float> weights, size_t begin, size_t end,
|
|
SketchContainer* sketch_container, int num_cuts_per_feature,
|
|
size_t num_columns,
|
|
bool is_ranking, Span<bst_group_t const> d_group_ptr) {
|
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
|
const auto& host_data = page.data.ConstHostVector();
|
|
dh::caching_device_vector<Entry> sorted_entries(host_data.begin() + begin,
|
|
host_data.begin() + end);
|
|
|
|
// Binary search to assign weights to each element
|
|
dh::caching_device_vector<float> temp_weights(sorted_entries.size());
|
|
auto d_temp_weights = temp_weights.data().get();
|
|
page.offset.SetDevice(device);
|
|
auto row_ptrs = page.offset.ConstDeviceSpan();
|
|
size_t base_rowid = page.base_rowid;
|
|
if (is_ranking) {
|
|
CHECK_GE(d_group_ptr.size(), 2)
|
|
<< "Must have at least 1 group for ranking.";
|
|
CHECK_EQ(weights.size(), d_group_ptr.size() - 1)
|
|
<< "Weight size should equal to number of groups.";
|
|
dh::LaunchN(device, temp_weights.size(), [=] __device__(size_t idx) {
|
|
size_t element_idx = idx + begin;
|
|
size_t ridx = thrust::upper_bound(thrust::seq, row_ptrs.begin(),
|
|
row_ptrs.end(), element_idx) -
|
|
row_ptrs.begin() - 1;
|
|
auto it =
|
|
thrust::upper_bound(thrust::seq,
|
|
d_group_ptr.cbegin(), d_group_ptr.cend(),
|
|
ridx + base_rowid) - 1;
|
|
bst_group_t group = thrust::distance(d_group_ptr.cbegin(), it);
|
|
d_temp_weights[idx] = weights[group];
|
|
});
|
|
} else {
|
|
CHECK_EQ(weights.size(), page.offset.Size() - 1);
|
|
dh::LaunchN(device, temp_weights.size(), [=] __device__(size_t idx) {
|
|
size_t element_idx = idx + begin;
|
|
size_t ridx = thrust::upper_bound(thrust::seq, row_ptrs.begin(),
|
|
row_ptrs.end(), element_idx) -
|
|
row_ptrs.begin() - 1;
|
|
d_temp_weights[idx] = weights[ridx + base_rowid];
|
|
});
|
|
}
|
|
|
|
// Sort both entries and wegihts.
|
|
thrust::sort_by_key(thrust::cuda::par(alloc), sorted_entries.begin(),
|
|
sorted_entries.end(), temp_weights.begin(),
|
|
EntryCompareOp());
|
|
|
|
// Scan weights
|
|
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
|
|
sorted_entries.begin(), sorted_entries.end(),
|
|
temp_weights.begin(), temp_weights.begin(),
|
|
[=] __device__(const Entry& a, const Entry& b) {
|
|
return a.index == b.index;
|
|
});
|
|
|
|
dh::caching_device_vector<size_t> column_sizes_scan;
|
|
GetColumnSizesScan(device, &column_sizes_scan,
|
|
{sorted_entries.data().get(), sorted_entries.size()},
|
|
num_columns);
|
|
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
|
|
|
|
// Extract cuts
|
|
dh::caching_device_vector<SketchEntry> cuts(num_columns * num_cuts_per_feature);
|
|
ExtractWeightedCuts(device, num_cuts_per_feature,
|
|
dh::ToSpan(sorted_entries),
|
|
dh::ToSpan(temp_weights),
|
|
dh::ToSpan(column_sizes_scan),
|
|
dh::ToSpan(cuts));
|
|
|
|
// add cuts into sketches
|
|
thrust::host_vector<SketchEntry> host_cuts(cuts);
|
|
sketch_container->Push(num_cuts_per_feature, host_cuts, host_column_sizes_scan);
|
|
}
|
|
|
|
HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
|
|
size_t sketch_batch_num_elements) {
|
|
// Configure batch size based on available memory
|
|
bool has_weights = dmat->Info().weights_.Size() > 0;
|
|
size_t num_cuts_per_feature = RequiredSampleCuts(max_bins, dmat->Info().num_row_);
|
|
if (sketch_batch_num_elements == 0) {
|
|
int bytes_per_element = has_weights ? 24 : 16;
|
|
size_t bytes_cuts = num_cuts_per_feature * dmat->Info().num_col_ * sizeof(SketchEntry);
|
|
// use up to 80% of available space
|
|
sketch_batch_num_elements =
|
|
(dh::AvailableMemory(device) - bytes_cuts) * 0.8 / bytes_per_element;
|
|
}
|
|
|
|
HistogramCuts cuts;
|
|
DenseCuts dense_cuts(&cuts);
|
|
SketchContainer sketch_container(max_bins, dmat->Info().num_col_,
|
|
dmat->Info().num_row_);
|
|
|
|
dmat->Info().weights_.SetDevice(device);
|
|
for (const auto& batch : dmat->GetBatches<SparsePage>()) {
|
|
size_t batch_nnz = batch.data.Size();
|
|
auto const& info = dmat->Info();
|
|
dh::caching_device_vector<uint32_t> groups(info.group_ptr_.cbegin(),
|
|
info.group_ptr_.cend());
|
|
for (auto begin = 0ull; begin < batch_nnz; begin += sketch_batch_num_elements) {
|
|
size_t end = std::min(batch_nnz, size_t(begin + sketch_batch_num_elements));
|
|
if (has_weights) {
|
|
bool is_ranking = CutsBuilder::UseGroup(dmat);
|
|
ProcessWeightedBatch(
|
|
device, batch, dmat->Info().weights_.ConstDeviceSpan(), begin, end,
|
|
&sketch_container,
|
|
num_cuts_per_feature,
|
|
dmat->Info().num_col_,
|
|
is_ranking, dh::ToSpan(groups));
|
|
} else {
|
|
ProcessBatch(device, batch, begin, end, &sketch_container, num_cuts_per_feature,
|
|
dmat->Info().num_col_);
|
|
}
|
|
}
|
|
}
|
|
|
|
dense_cuts.Init(&sketch_container.sketches_, max_bins, dmat->Info().num_row_);
|
|
return cuts;
|
|
}
|
|
|
|
template <typename AdapterT>
|
|
void ProcessBatch(AdapterT* adapter, size_t begin, size_t end, float missing,
|
|
SketchContainer* sketch_container, int num_cuts) {
|
|
dh::XGBCachingDeviceAllocator<char> alloc;
|
|
adapter->BeforeFirst();
|
|
adapter->Next();
|
|
auto &batch = adapter->Value();
|
|
// Enforce single batch
|
|
CHECK(!adapter->Next());
|
|
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
|
|
thrust::make_counting_iterator(0llu),
|
|
[=] __device__(size_t idx) { return batch.GetElement(idx); });
|
|
auto entry_iter = dh::MakeTransformIterator<Entry>(
|
|
thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) {
|
|
return Entry(batch.GetElement(idx).column_idx,
|
|
batch.GetElement(idx).value);
|
|
});
|
|
// Work out how many valid entries we have in each column
|
|
dh::caching_device_vector<size_t> column_sizes_scan(adapter->NumColumns() + 1,
|
|
0);
|
|
|
|
auto d_column_sizes_scan = column_sizes_scan.data().get();
|
|
data::IsValidFunctor is_valid(missing);
|
|
dh::LaunchN(adapter->DeviceIdx(), end - begin, [=] __device__(size_t idx) {
|
|
auto e = batch_iter[begin + idx];
|
|
if (is_valid(e)) {
|
|
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
|
|
&d_column_sizes_scan[e.column_idx]),
|
|
static_cast<unsigned long long>(1)); // NOLINT
|
|
}
|
|
});
|
|
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan.begin(),
|
|
column_sizes_scan.end(), column_sizes_scan.begin());
|
|
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
|
|
size_t num_valid = host_column_sizes_scan.back();
|
|
|
|
// Copy current subset of valid elements into temporary storage and sort
|
|
dh::caching_device_vector<Entry> sorted_entries(num_valid);
|
|
thrust::copy_if(thrust::cuda::par(alloc), entry_iter + begin,
|
|
entry_iter + end, sorted_entries.begin(), is_valid);
|
|
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
|
|
sorted_entries.end(), EntryCompareOp());
|
|
|
|
// Extract the cuts from all columns concurrently
|
|
dh::caching_device_vector<SketchEntry> cuts(adapter->NumColumns() * num_cuts);
|
|
ExtractCuts(adapter->DeviceIdx(), num_cuts,
|
|
dh::ToSpan(sorted_entries),
|
|
dh::ToSpan(column_sizes_scan),
|
|
dh::ToSpan(cuts));
|
|
|
|
// Push cuts into sketches stored in host memory
|
|
thrust::host_vector<SketchEntry> host_cuts(cuts);
|
|
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
|
|
}
|
|
|
|
template <typename AdapterT>
|
|
HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
|
|
float missing,
|
|
size_t sketch_batch_num_elements) {
|
|
size_t num_cuts = RequiredSampleCuts(num_bins, adapter->NumRows());
|
|
if (sketch_batch_num_elements == 0) {
|
|
int bytes_per_element = 16;
|
|
size_t bytes_cuts = num_cuts * adapter->NumColumns() * sizeof(SketchEntry);
|
|
size_t bytes_num_columns = (adapter->NumColumns() + 1) * sizeof(size_t);
|
|
// use up to 80% of available space
|
|
sketch_batch_num_elements = (dh::AvailableMemory(adapter->DeviceIdx()) -
|
|
bytes_cuts - bytes_num_columns) *
|
|
0.8 / bytes_per_element;
|
|
}
|
|
|
|
CHECK(adapter->NumRows() != data::kAdapterUnknownSize);
|
|
CHECK(adapter->NumColumns() != data::kAdapterUnknownSize);
|
|
|
|
adapter->BeforeFirst();
|
|
adapter->Next();
|
|
auto& batch = adapter->Value();
|
|
|
|
// Enforce single batch
|
|
CHECK(!adapter->Next());
|
|
|
|
HistogramCuts cuts;
|
|
DenseCuts dense_cuts(&cuts);
|
|
SketchContainer sketch_container(num_bins, adapter->NumColumns(),
|
|
adapter->NumRows());
|
|
|
|
for (auto begin = 0ull; begin < batch.Size();
|
|
begin += sketch_batch_num_elements) {
|
|
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
|
|
ProcessBatch(adapter, begin, end, missing, &sketch_container, num_cuts);
|
|
}
|
|
|
|
dense_cuts.Init(&sketch_container.sketches_, num_bins, adapter->NumRows());
|
|
return cuts;
|
|
}
|
|
|
|
template HistogramCuts AdapterDeviceSketch(data::CudfAdapter* adapter,
|
|
int num_bins, float missing,
|
|
size_t sketch_batch_size);
|
|
template HistogramCuts AdapterDeviceSketch(data::CupyAdapter* adapter,
|
|
int num_bins, float missing,
|
|
size_t sketch_batch_size);
|
|
} // namespace common
|
|
} // namespace xgboost
|