29 Commits

Author SHA1 Message Date
Jiaming Yuan
29a4cfe400
Group aware GPU sketching. (#5551)
* Group aware GPU weighted sketching.

* Distribute group weights to each data point.
* Relax the test.
* Validate input meta info.
* Fix metainfo copy ctor.
2020-04-20 17:18:52 +08:00
Rory Mitchell
13b10a6370
Device dmatrix (#5420) 2020-03-28 14:42:21 +13:00
Rory Mitchell
b745b7acce
Fix memory usage of device sketching (#5407) 2020-03-14 13:43:24 +13:00
Rory Mitchell
a38e7bd19c
Sketching from adapters (#5365)
* Sketching from adapters

* Add weights test
2020-03-07 21:07:58 +13:00
Rory Mitchell
7e32af5c21
Wide dataset quantile performance improvement (#5306) 2020-02-16 10:24:42 +13:00
Rory Mitchell
24ad9dec0b
Testing hist_util (#5251)
* Rank tests

* Remove categorical split specialisation

* Extend tests to multiple features, switch to WQSketch

* Add tests for SparseCuts

* Add external memory quantile tests, fix some existing tests
2020-02-14 14:36:43 +13:00
Rong Ou
0afcc55d98 Support multiple batches in gpu_hist (#5014)
* Initial external memory training support for GPU Hist tree method.
2019-11-16 14:50:20 +08:00
Jiaming Yuan
7663de956c
Run training with empty DMatrix. (#4990)
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.

* Disable rabit mock test for now: See #5012 .

* Disable dask-cudf test at prediction for now: See #5003

* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.

   Using AUC and AUC-PR still throws an error.  See #4663 for a robust fix.

* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.

* Sync number of columns in DMatrix.

  As num_feature is required to be the same across all workers in data split
  mode.

* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.

* Fix Jenkins' GPU tests.

* Install dask-cuda from source in Jenkins' test.

  Now all tests are actually running.

* Restore GPU Hist tree synchronization test.

* Check UUID of running devices.

  The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.

* Fix CMake policy and project variables.

  Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.

* Fix copying data to CPU

* Fix race condition in cpu predictor.

* Fix duplicated DMatrix construction.

* Don't download extra nccl in CI script.
2019-11-06 16:13:13 +08:00
Jiaming Yuan
095de3bf5f
Export c++ headers in CMake installation. (#4897)
* Move get transpose into cc.

* Clean up headers in host device vector, remove thrust dependency.

* Move span and host device vector into public.

* Install c++ headers.

* Short notes for c and c++.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-10-06 23:53:09 -04:00
Rong Ou
562bb0ae31 remove device shards (#4867) 2019-09-25 13:15:46 +08:00
Rong Ou
125bcec62e Move ellpack page construction into DMatrix (#4833) 2019-09-16 23:50:55 -04:00
Rong Ou
38ab79f889 Make HostDeviceVector single gpu only (#4773)
* Make HostDeviceVector single gpu only
2019-08-26 09:51:13 +12:00
Rong Ou
6edddd7966 Refactor DMatrix to return batches of different page types (#4686)
* Use explicit template parameter for specifying page type.
2019-08-03 15:10:34 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
d9a47794a5 Fix CPU hist init for sparse dataset. (#4625)
* Fix CPU hist init for sparse dataset.

* Implement sparse histogram cut.
* Allow empty features.

* Fix windows build, don't use sparse in distributed environment.

* Comments.

* Smaller threshold.

* Fix windows omp.

* Fix msvc lambda capture.

* Fix MSVC macro.

* Fix MSVC initialization list.

* Fix MSVC initialization list x2.

* Preserve categorical feature behavior.

* Rename matrix to sparse cuts.
* Reuse UseGroup.
* Check for categorical data when adding cut.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* Sanity check.

* Fix comments.

* Fix comment.
2019-07-04 16:27:03 -07:00
sriramch
90f683b25b Set the appropriate device before freeing device memory... (#4566)
* - set the appropriate device before freeing device memory...
   - pr #4532 added a global memory tracker/logger to keep track of number of (de)allocations
     and peak memory usage on a per device basis.
   - this pr adds the appropriate check to make sure that the (de)allocation counts and memory usages
     makes sense for the device. since verbosity is typically increased on debug/non-retail builds.  
* - pre-create cub allocators and reuse them
   - create them once and not resize them dynamically. we need to ensure that these allocators
     are created and destroyed exactly once so that the appropriate device id's are set
2019-06-18 14:58:05 +12:00
Rory Mitchell
9683fd433e
Overload device memory allocation (#4532)
* Group source files, include headers in source files

* Overload device memory allocation
2019-06-10 11:35:13 +12:00
sriramch
fed665ae8a - training with external memory part 1 of 2 (#4486)
* - training with external memory part 1 of 2
   - this pr focuses on computing the quantiles using multiple gpus on a
     dataset that uses the external cache capabilities
   - there will a follow-up pr soon after this that will support creation
     of histogram indices on large dataset as well
   - both of these changes are required to support training with external memory
   - the sparse pages in dmatrix are taken in batches and the the cut matrices
     are incrementally built
   - also snuck in some (perf) changes related to sketches aggregation amongst multiple
     features across multiple sparse page batches. instead of aggregating the summary
     inside each device and merged later, it is aggregated in-place when the device
     is working on different rows but the same feature
2019-05-30 08:18:34 +12:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Jiaming Yuan
7b9043cf71
Fix clang-tidy warnings. (#4149)
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.

* Reformat.
2019-03-13 02:25:51 +08:00
Rory Mitchell
4eeeded7d1
Remove various synchronisations from cuda API calls, instrument monitor (#4205)
* Remove various synchronisations from cuda API calls, instrument monitor
with nvtx profiler ranges.
2019-03-10 15:01:23 +13:00
Rory Mitchell
93f9ce9ef9
Single precision histograms on GPU (#3965)
* Allow single precision histogram summation in gpu_hist

* Add python test, reduce run-time of gpu_hist tests

* Update documentation
2018-12-10 10:55:30 +13:00
Rory Mitchell
a9d684db18
GPU performance logging/improvements (#3945)
- Improved GPU performance logging

- Only use one execute shards function

- Revert performance regression on multi-GPU

- Use threads to launch NCCL AllReduce
2018-11-29 14:36:51 +13:00
Jiaming Yuan
f1275f52c1
Fix specifying gpu_id, add tests. (#3851)
* Rewrite gpu_id related code.

* Remove normalised/unnormalised operatios.
* Address difference between `Index' and `Device ID'.
* Modify doc for `gpu_id'.
* Better LOG for GPUSet.
* Check specified n_gpus.
* Remove inappropriate `device_idx' term.
* Clarify GpuIdType and size_t.
2018-11-06 18:17:53 +13:00
trivialfis
5a7f7e7d49 Implement devices to devices reshard. (#3721)
* Force clearing device memory before Reshard.
* Remove calculating row_segments for gpu_hist and gpu_sketch.
* Guard against changing device.
2018-09-28 17:40:23 +12:00
Andy Adinets
72cd1517d6 Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage. (#3446)
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.

- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring

* Added const version of HostDeviceVector API calls.

- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions

* Updated src/linear/updater_gpu_coordinate.cu.

* Added read-only state for HostDeviceVector sync.

- this means no copies are performed if both host and devices access
  the HostDeviceVector read-only

* Fixed linter and test errors.

- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
  e.g. in calls to cudaSetDevice()

* Fixed explicit template instantiation errors for HostDeviceVector.

- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>

* Fixed HostDeviceVector tests that require multiple GPUs.

- added a mock set device handler; when set, it is called instead of cudaSetDevice()
2018-08-30 14:28:47 +12:00
Andy Adinets
58d783df16 Fixed issue 3605. (#3628)
* Fixed issue 3605.

- https://github.com/dmlc/xgboost/issues/3605

* Fixed the bug in a better way.

* Added a test to catch the bug.

* Fixed linter errors.
2018-08-28 10:50:52 -07:00
trivialfis
60787ecebc Merge generic device helper functions into gpu set. (#3626)
* Remove the use of old NDevices* functions.
* Use GPUSet in timer.h.
2018-08-26 18:14:23 +12:00
Andy Adinets
cc6a5a3666 Added finding quantiles on GPU. (#3393)
* Added finding quantiles on GPU.

- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
  as those found by the old one, test thresholds in
    tests/python-gpu/test_gpu_updaters.py have been adjusted.

* Adjustments and improved testing for finding quantiles on the GPU.

- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
2018-07-27 14:03:16 +12:00