xgboost/tests/python-gpu/test_gpu_with_dask.py
2019-12-26 11:51:54 +08:00

60 lines
2.0 KiB
Python

import sys
import pytest
import numpy as np
import unittest
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
sys.path.append("tests/python")
from test_with_dask import run_empty_dmatrix # noqa
from test_with_dask import generate_array # noqa
import testing as tm # noqa
try:
import dask.dataframe as dd
from xgboost import dask as dxgb
from dask_cuda import LocalCUDACluster
from dask.distributed import Client
import cudf
except ImportError:
pass
class TestDistributedGPU(unittest.TestCase):
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_dask_cudf())
@pytest.mark.skipif(**tm.no_dask_cuda())
def test_dask_dataframe(self):
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
X, y = generate_array()
X = dd.from_dask_array(X)
y = dd.from_dask_array(y)
X = X.map_partitions(cudf.from_pandas)
y = y.map_partitions(cudf.from_pandas)
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, {'tree_method': 'gpu_hist'},
dtrain=dtrain,
evals=[(dtrain, 'X')],
num_boost_round=2)
assert isinstance(out['booster'], dxgb.Booster)
assert len(out['history']['X']['rmse']) == 2
predictions = dxgb.predict(client, out, dtrain).compute()
assert isinstance(predictions, np.ndarray)
@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_dask_cuda())
@pytest.mark.mgpu
def test_empty_dmatrix(self):
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
parameters = {'tree_method': 'gpu_hist'}
run_empty_dmatrix(client, parameters)