xgboost/src/data/gradient_index.h
2021-07-01 00:44:49 +08:00

87 lines
2.9 KiB
C++

/*!
* Copyright 2017-2021 by Contributors
* \brief Data type for fast histogram aggregation.
*/
#ifndef XGBOOST_DATA_GRADIENT_INDEX_H_
#define XGBOOST_DATA_GRADIENT_INDEX_H_
#include <vector>
#include "xgboost/base.h"
#include "xgboost/data.h"
#include "../common/hist_util.h"
#include "../common/threading_utils.h"
namespace xgboost {
/*!
* \brief preprocessed global index matrix, in CSR format
*
* Transform floating values to integer index in histogram This is a global histogram
* index for CPU histogram. On GPU ellpack page is used.
*/
class GHistIndexMatrix {
public:
/*! \brief row pointer to rows by element position */
std::vector<size_t> row_ptr;
/*! \brief The index data */
common::Index index;
/*! \brief hit count of each index */
std::vector<size_t> hit_count;
/*! \brief The corresponding cuts */
common::HistogramCuts cut;
DMatrix* p_fmat;
size_t max_num_bins;
GHistIndexMatrix(DMatrix* x, int32_t max_bin) {
this->Init(x, max_bin);
}
// Create a global histogram matrix, given cut
void Init(DMatrix* p_fmat, int max_num_bins);
// specific method for sparse data as no possibility to reduce allocated memory
template <typename BinIdxType, typename GetOffset>
void SetIndexData(common::Span<BinIdxType> index_data_span,
size_t batch_threads, const SparsePage &batch,
size_t rbegin, size_t nbins, GetOffset get_offset) {
const xgboost::Entry *data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t> &offset_vec = batch.offset.HostVector();
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
BinIdxType* index_data = index_data_span.data();
common::ParallelFor(omp_ulong(batch_size), batch_threads, [&](omp_ulong i) {
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
const size_t size = offset_vec[i + 1] - offset_vec[i];
SparsePage::Inst inst = {data_ptr + offset_vec[i], size};
CHECK_EQ(ibegin + inst.size(), iend);
for (bst_uint j = 0; j < inst.size(); ++j) {
uint32_t idx = cut.SearchBin(inst[j]);
index_data[ibegin + j] = get_offset(idx, j);
++hit_count_tloc_[tid * nbins + idx];
}
});
}
void ResizeIndex(const size_t n_index,
const bool isDense);
inline void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.Ptrs().size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
auto ibegin = cut.Ptrs()[fid];
auto iend = cut.Ptrs()[fid + 1];
for (auto i = ibegin; i < iend; ++i) {
counts[fid] += hit_count[i];
}
}
}
inline bool IsDense() const {
return isDense_;
}
private:
std::vector<size_t> hit_count_tloc_;
bool isDense_;
};
} // namespace xgboost
#endif // XGBOOST_DATA_GRADIENT_INDEX_H_