/*! * Copyright 2017-2021 by Contributors * \brief Data type for fast histogram aggregation. */ #ifndef XGBOOST_DATA_GRADIENT_INDEX_H_ #define XGBOOST_DATA_GRADIENT_INDEX_H_ #include #include "xgboost/base.h" #include "xgboost/data.h" #include "../common/hist_util.h" #include "../common/threading_utils.h" namespace xgboost { /*! * \brief preprocessed global index matrix, in CSR format * * Transform floating values to integer index in histogram This is a global histogram * index for CPU histogram. On GPU ellpack page is used. */ class GHistIndexMatrix { public: /*! \brief row pointer to rows by element position */ std::vector row_ptr; /*! \brief The index data */ common::Index index; /*! \brief hit count of each index */ std::vector hit_count; /*! \brief The corresponding cuts */ common::HistogramCuts cut; DMatrix* p_fmat; size_t max_num_bins; GHistIndexMatrix(DMatrix* x, int32_t max_bin) { this->Init(x, max_bin); } // Create a global histogram matrix, given cut void Init(DMatrix* p_fmat, int max_num_bins); // specific method for sparse data as no possibility to reduce allocated memory template void SetIndexData(common::Span index_data_span, size_t batch_threads, const SparsePage &batch, size_t rbegin, size_t nbins, GetOffset get_offset) { const xgboost::Entry *data_ptr = batch.data.HostVector().data(); const std::vector &offset_vec = batch.offset.HostVector(); const size_t batch_size = batch.Size(); CHECK_LT(batch_size, offset_vec.size()); BinIdxType* index_data = index_data_span.data(); common::ParallelFor(omp_ulong(batch_size), batch_threads, [&](omp_ulong i) { const int tid = omp_get_thread_num(); size_t ibegin = row_ptr[rbegin + i]; size_t iend = row_ptr[rbegin + i + 1]; const size_t size = offset_vec[i + 1] - offset_vec[i]; SparsePage::Inst inst = {data_ptr + offset_vec[i], size}; CHECK_EQ(ibegin + inst.size(), iend); for (bst_uint j = 0; j < inst.size(); ++j) { uint32_t idx = cut.SearchBin(inst[j]); index_data[ibegin + j] = get_offset(idx, j); ++hit_count_tloc_[tid * nbins + idx]; } }); } void ResizeIndex(const size_t n_index, const bool isDense); inline void GetFeatureCounts(size_t* counts) const { auto nfeature = cut.Ptrs().size() - 1; for (unsigned fid = 0; fid < nfeature; ++fid) { auto ibegin = cut.Ptrs()[fid]; auto iend = cut.Ptrs()[fid + 1]; for (auto i = ibegin; i < iend; ++i) { counts[fid] += hit_count[i]; } } } inline bool IsDense() const { return isDense_; } private: std::vector hit_count_tloc_; bool isDense_; }; } // namespace xgboost #endif // XGBOOST_DATA_GRADIENT_INDEX_H_