* Converted ml.dmlc.xgboost4j.LabeledPoint to Scala
This allows to easily integrate LabeledPoint with Spark DataFrame APIs,
which support encoding/decoding case classes out of the box. Alternative
solution would be to keep LabeledPoint in Java and make it a Bean by
generating boilerplate getters/setters. I have decided against that, even
thought the conversion in this PR implies a public API change.
I also had to remove the factory methods fromSparseVector and
fromDenseVector because a) they would need to be duplicated to support
overloaded calls with extra data (e.g. weight); and b) Scala would expose
them via mangled $.MODULE$ which looks ugly in Java.
Additionally, this commit makes it possible to switch to LabeledPoint in
all public APIs and effectively to pass initial margin/group as part of
the point. This seems to be the only reliable way of implementing distributed
learning with these data. Note that group size format used by single-node
XGBoost is not compatible with that scenario, since the partition split
could divide a group into two chunks.
* Switched to ml.dmlc.xgboost4j.LabeledPoint in RDD-based public APIs
Note that DataFrame-based and Flink APIs are not affected by this change.
* Removed baseMargin argument in favour of the LabeledPoint field
* Do a single pass over the partition in buildDistributedBoosters
Note that there is no formal guarantee that
val repartitioned = rdd.repartition(42)
repartitioned.zipPartitions(repartitioned.map(_ + 1)) { it1, it2, => ... }
would do a single shuffle, but in practice it seems to be always the case.
* Exposed baseMargin in DataFrame-based API
* Addressed review comments
* Pass baseMargin to XGBoost.trainWithDataFrame via params
* Reverted MLLabeledPoint in Spark APIs
As discussed, baseMargin would only be supported for DataFrame-based APIs.
* Cleaned up baseMargin tests
- Removed RDD-based test, since the option is no longer exposed via
public APIs
- Changed DataFrame-based one to check that adding a margin actually
affects the prediction
* Pleased Scalastyle
* Addressed more review comments
* Pleased scalastyle again
* Fixed XGBoost.fromBaseMarginsToArray
which always returned an array of NaNs even if base margin was not
specified. Surprisingly this only failed a few tests.
[GPU-Plugin] Multi-GPU gpu_id bug fixes for grow_gpu_hist and grow_gpu methods, and additional documentation for the gpu plugin. (#2463)
eXtreme Gradient Boosting
Documentation | Resources | Installation | Release Notes | RoadMap
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
What's New
- XGBoost GPU support with fast histogram algorithm
- XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow, see JVM-Package
- Story and Lessons Behind the Evolution of XGBoost
- Tutorial: Distributed XGBoost on AWS with YARN
- XGBoost brick Release
Ask a Question
- For reporting bugs please use the xgboost/issues page.
- For generic questions or to share your experience using XGBoost please use the XGBoost User Group
Help to Make XGBoost Better
XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.
- Check out call for contributions and Roadmap to see what can be improved, or open an issue if you want something.
- Contribute to the documents and examples to share your experience with other users.
- Add your stories and experience to Awesome XGBoost.
- Please add your name to CONTRIBUTORS.md and after your patch has been merged.
- Please also update NEWS.md on changes and improvements in API and docs.
License
© Contributors, 2016. Licensed under an Apache-2 license.
Reference
- Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
- XGBoost originates from research project at University of Washington, see also the Project Page at UW.
Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Languages
C++
45.5%
Python
20.3%
Cuda
15.2%
R
6.8%
Scala
6.4%
Other
5.6%