Will Storey 747381b520 Improve .gitignore patterns (#3184)
* Adjust xgboost entries in .gitignore

They were overly broad. In particularly this was inconvenient when
working with tools such as fzf that use the .gitignore to decide what to
include. As written, we'd not look into /include/xgboost.

* Make cosmetic improvements to .gitignore

* Remove dmlc-core from .gitignore

This seems unnecessary and has the drawback that tools that use
.gitignore to know files to skip mean they won't look here, and being
able to inspect the submodule files with them is useful.
2018-05-09 14:31:59 -07:00
2018-03-21 19:24:29 -04:00
2017-09-17 17:13:11 +12:00
2018-04-19 18:57:13 +12:00
2018-05-09 10:18:36 -07:00
2018-04-19 18:57:13 +12:00
2018-05-09 14:31:59 -07:00
2018-04-19 18:57:13 +12:00
2017-12-01 02:58:13 -08:00
2017-11-27 08:56:01 +13:00
2018-05-04 16:50:59 +12:00
2018-04-11 21:43:32 +09:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%