* Add travis sanitizers tests. * Add gcc-7 in Travis. * Add SANITIZER_PATH for CMake. * Enable sanitizer tests in Travis. * Fix memory leaks in tests. * Fix all memory leaks reported by Address Sanitizer. * tests/cpp/helpers.h/CreateDMatrix now returns raw pointer.
213 lines
8.2 KiB
C++
213 lines
8.2 KiB
C++
// Copyright by Contributors
|
|
#include <xgboost/objective.h>
|
|
|
|
#include "../helpers.h"
|
|
|
|
TEST(Objective, LinearRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:linear");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{0, 0, 0, 0, 1, 1, 1, 1},
|
|
{1, 1, 1, 1, 1, 1, 1, 1},
|
|
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
|
|
{1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
ASSERT_NO_THROW(obj->DefaultEvalMetric());
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, LogisticRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:logistic");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, LogisticRegressionBasic) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:logistic");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
|
|
<< "Expected error when label not in range [0,1f] for LogisticRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.197f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), 0, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), 2.197f, 0.01f);
|
|
EXPECT_ANY_THROW(obj->ProbToMargin(10))
|
|
<< "Expected error when base_score not in range [0,1f] for LogisticRegression";
|
|
|
|
// test PredTransform
|
|
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<xgboost::bst_float> out_preds = {0.5f, 0.524f, 0.622f, 0.710f, 0.731f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.HostVector();
|
|
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, LogisticRawGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("binary:logitraw");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, PoissonRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("count:poisson");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
args.push_back(std::make_pair("max_delta_step", "0.1f"));
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 1, 1.10f, 2.45f, 2.71f, 0, 0.10f, 1.45f, 1.71f},
|
|
{1.10f, 1.22f, 2.71f, 3.00f, 1.10f, 1.22f, 2.71f, 3.00f});
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, PoissonRegressionBasic) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("count:poisson");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {-1}, {1}, {0}, {0}))
|
|
<< "Expected error when label < 0 for PoissonRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.30f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), -0.69f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), -0.10f, 0.01f);
|
|
|
|
// test PredTransform
|
|
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<xgboost::bst_float> out_preds = {1, 1.10f, 1.64f, 2.45f, 2.71f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.HostVector();
|
|
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, GammaRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:gamma");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{0, 0, 0, 0, 1, 1, 1, 1},
|
|
{1, 1, 1, 1, 1, 1, 1, 1},
|
|
{1, 1, 1, 1, 0, 0.09f, 0.59f, 0.63f},
|
|
{0, 0, 0, 0, 1, 0.90f, 0.40f, 0.36f});
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, GammaRegressionBasic) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:gamma");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {-1}, {1}, {0}, {0}))
|
|
<< "Expected error when label < 0 for GammaRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.30f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), -0.69f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), -0.10f, 0.01f);
|
|
|
|
// test PredTransform
|
|
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<xgboost::bst_float> out_preds = {1, 1.10f, 1.64f, 2.45f, 2.71f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.HostVector();
|
|
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, TweedieRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:tweedie");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
args.push_back(std::make_pair("tweedie_variance_power", "1.1f"));
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 1, 1.09f, 2.24f, 2.45f, 0, 0.10f, 1.33f, 1.55f},
|
|
{0.89f, 0.98f, 2.02f, 2.21f, 1, 1.08f, 2.11f, 2.30f});
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, TweedieRegressionBasic) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:tweedie");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {-1}, {1}, {0}, {0}))
|
|
<< "Expected error when label < 0 for TweedieRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.30f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), -0.69f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), -0.10f, 0.01f);
|
|
|
|
// test PredTransform
|
|
xgboost::HostDeviceVector<xgboost::bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<xgboost::bst_float> out_preds = {1, 1.10f, 1.64f, 2.45f, 2.71f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.HostVector();
|
|
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
|
|
delete obj;
|
|
}
|
|
|
|
TEST(Objective, CoxRegressionGPair) {
|
|
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("survival:cox");
|
|
std::vector<std::pair<std::string, std::string> > args;
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, -2, -2, 2, 3, 5, -10, 100},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0, 0, 0, -0.799f, -0.788f, -0.590f, 0.910f, 1.006f},
|
|
{ 0, 0, 0, 0.160f, 0.186f, 0.348f, 0.610f, 0.639f});
|
|
|
|
delete obj;
|
|
}
|