xgboost/src/common/device_helpers.cuh
Rong Ou 5b1715d97c Write ELLPACK pages to disk (#4879)
* add ellpack source
* add batch param
* extract function to parse cache info
* construct ellpack info separately
* push batch to ellpack page
* write ellpack page.
* make sparse page source reusable
2019-10-22 23:44:32 -04:00

1263 lines
41 KiB
Plaintext

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#pragma once
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/device_malloc_allocator.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#include <xgboost/logging.h>
#include <rabit/rabit.h>
#include <cub/util_allocator.cuh>
#include "xgboost/host_device_vector.h"
#include "xgboost/span.h"
#include "common.h"
#include <algorithm>
#include <omp.h>
#include <chrono>
#include <ctime>
#include <cub/cub.cuh>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "timer.h"
#ifdef XGBOOST_USE_NCCL
#include "nccl.h"
#include "../common/io.h"
#endif
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600
#else // In device code and CUDA < 600
XGBOOST_DEVICE __forceinline__ double atomicAdd(double* address, double val) {
unsigned long long int* address_as_ull =
(unsigned long long int*)address; // NOLINT
unsigned long long int old = *address_as_ull, assumed; // NOLINT
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN !=
// NaN)
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
namespace dh {
#define HOST_DEV_INLINE XGBOOST_DEVICE __forceinline__
#define DEV_INLINE __device__ __forceinline__
#ifdef XGBOOST_USE_NCCL
#define safe_nccl(ans) ThrowOnNcclError((ans), __FILE__, __LINE__)
inline ncclResult_t ThrowOnNcclError(ncclResult_t code, const char *file,
int line) {
if (code != ncclSuccess) {
std::stringstream ss;
ss << "NCCL failure :" << ncclGetErrorString(code) << " ";
ss << file << "(" << line << ")";
throw std::runtime_error(ss.str());
}
return code;
}
#endif
inline int32_t CudaGetPointerDevice(void* ptr) {
int32_t device = -1;
cudaPointerAttributes attr;
dh::safe_cuda(cudaPointerGetAttributes(&attr, ptr));
device = attr.device;
return device;
}
inline void CudaCheckPointerDevice(void* ptr) {
auto ptr_device = CudaGetPointerDevice(ptr);
int cur_device = -1;
dh::safe_cuda(cudaGetDevice(&cur_device));
CHECK_EQ(ptr_device, cur_device) << "pointer device: " << ptr_device
<< "current device: " << cur_device;
}
template <typename T>
const T *Raw(const thrust::device_vector<T> &v) { // NOLINT
return raw_pointer_cast(v.data());
}
inline size_t AvailableMemory(int device_idx) {
size_t device_free = 0;
size_t device_total = 0;
safe_cuda(cudaSetDevice(device_idx));
dh::safe_cuda(cudaMemGetInfo(&device_free, &device_total));
return device_free;
}
inline size_t TotalMemory(int device_idx) {
size_t device_free = 0;
size_t device_total = 0;
safe_cuda(cudaSetDevice(device_idx));
dh::safe_cuda(cudaMemGetInfo(&device_free, &device_total));
return device_total;
}
/**
* \fn inline int max_shared_memory(int device_idx)
*
* \brief Maximum shared memory per block on this device.
*
* \param device_idx Zero-based index of the device.
*/
inline size_t MaxSharedMemory(int device_idx) {
cudaDeviceProp prop;
dh::safe_cuda(cudaGetDeviceProperties(&prop, device_idx));
return prop.sharedMemPerBlock;
}
inline void CheckComputeCapability() {
for (int d_idx = 0; d_idx < xgboost::common::AllVisibleGPUs(); ++d_idx) {
cudaDeviceProp prop;
safe_cuda(cudaGetDeviceProperties(&prop, d_idx));
std::ostringstream oss;
oss << "CUDA Capability Major/Minor version number: " << prop.major << "."
<< prop.minor << " is insufficient. Need >=3.5";
int failed = prop.major < 3 || (prop.major == 3 && prop.minor < 5);
if (failed) LOG(WARNING) << oss.str() << " for device: " << d_idx;
}
}
DEV_INLINE void AtomicOrByte(unsigned int* __restrict__ buffer, size_t ibyte, unsigned char b) {
atomicOr(&buffer[ibyte / sizeof(unsigned int)], (unsigned int)b << (ibyte % (sizeof(unsigned int)) * 8));
}
/*!
* \brief Find the strict upper bound for an element in a sorted array
* using binary search.
* \param cuts pointer to the first element of the sorted array
* \param n length of the sorted array
* \param v value for which to find the upper bound
* \return the smallest index i such that v < cuts[i], or n if v is greater or equal
* than all elements of the array
*/
template <typename T>
DEV_INLINE int UpperBound(const T* __restrict__ cuts, int n, T v) {
if (n == 0) { return 0; }
if (cuts[n - 1] <= v) { return n; }
if (cuts[0] > v) { return 0; }
int left = 0, right = n - 1;
while (right - left > 1) {
int middle = left + (right - left) / 2;
if (cuts[middle] > v) {
right = middle;
} else {
left = middle;
}
}
return right;
}
template <typename T>
__device__ xgboost::common::Range GridStrideRange(T begin, T end) {
begin += blockDim.x * blockIdx.x + threadIdx.x;
xgboost::common::Range r(begin, end);
r.Step(gridDim.x * blockDim.x);
return r;
}
template <typename T>
__device__ xgboost::common::Range BlockStrideRange(T begin, T end) {
begin += threadIdx.x;
xgboost::common::Range r(begin, end);
r.Step(blockDim.x);
return r;
}
// Threadblock iterates over range, filling with value. Requires all threads in
// block to be active.
template <typename IterT, typename ValueT>
__device__ void BlockFill(IterT begin, size_t n, ValueT value) {
for (auto i : BlockStrideRange(static_cast<size_t>(0), n)) {
begin[i] = value;
}
}
/*
* Kernel launcher
*/
template <typename L>
__global__ void LaunchNKernel(size_t begin, size_t end, L lambda) {
for (auto i : GridStrideRange(begin, end)) {
lambda(i);
}
}
template <typename L>
__global__ void LaunchNKernel(int device_idx, size_t begin, size_t end,
L lambda) {
for (auto i : GridStrideRange(begin, end)) {
lambda(i, device_idx);
}
}
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(int device_idx, size_t n, cudaStream_t stream, L lambda) {
if (n == 0) {
return;
}
safe_cuda(cudaSetDevice(device_idx));
const int GRID_SIZE =
static_cast<int>(xgboost::common::DivRoundUp(n, ITEMS_PER_THREAD * BLOCK_THREADS));
LaunchNKernel<<<GRID_SIZE, BLOCK_THREADS, 0, stream>>>(static_cast<size_t>(0),
n, lambda);
}
// Default stream version
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(int device_idx, size_t n, L lambda) {
LaunchN<ITEMS_PER_THREAD, BLOCK_THREADS>(device_idx, n, nullptr, lambda);
}
namespace detail {
/** \brief Keeps track of global device memory allocations. Thread safe.*/
class MemoryLogger {
// Information for a single device
struct DeviceStats {
size_t currently_allocated_bytes{ 0 };
size_t peak_allocated_bytes{ 0 };
size_t num_allocations{ 0 };
size_t num_deallocations{ 0 };
std::map<void *, size_t> device_allocations;
void RegisterAllocation(void *ptr, size_t n) {
device_allocations[ptr] = n;
currently_allocated_bytes += n;
peak_allocated_bytes =
std::max(peak_allocated_bytes, currently_allocated_bytes);
num_allocations++;
CHECK_GT(num_allocations, num_deallocations);
}
void RegisterDeallocation(void *ptr, size_t n, int current_device) {
auto itr = device_allocations.find(ptr);
if (itr == device_allocations.end()) {
LOG(FATAL) << "Attempting to deallocate " << n << " bytes on device "
<< current_device << " that was never allocated ";
}
num_deallocations++;
CHECK_LE(num_deallocations, num_allocations);
currently_allocated_bytes -= itr->second;
device_allocations.erase(itr);
}
};
DeviceStats stats_;
std::mutex mutex_;
public:
void RegisterAllocation(void *ptr, size_t n) {
if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug))
return;
std::lock_guard<std::mutex> guard(mutex_);
int current_device;
safe_cuda(cudaGetDevice(&current_device));
stats_.RegisterAllocation(ptr, n);
}
void RegisterDeallocation(void *ptr, size_t n) {
if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug))
return;
std::lock_guard<std::mutex> guard(mutex_);
int current_device;
safe_cuda(cudaGetDevice(&current_device));
stats_.RegisterDeallocation(ptr, n, current_device);
}
void Log() {
if (!xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug))
return;
std::lock_guard<std::mutex> guard(mutex_);
int current_device;
safe_cuda(cudaGetDevice(&current_device));
LOG(CONSOLE) << "======== Device " << current_device << " Memory Allocations: "
<< " ========";
LOG(CONSOLE) << "Peak memory usage: "
<< stats_.peak_allocated_bytes / 1048576 << "MiB";
LOG(CONSOLE) << "Number of allocations: " << stats_.num_allocations;
}
};
};
inline detail::MemoryLogger &GlobalMemoryLogger() {
static detail::MemoryLogger memory_logger;
return memory_logger;
}
namespace detail{
/**
* \brief Default memory allocator, uses cudaMalloc/Free and logs allocations if verbose.
*/
template <class T>
struct XGBDefaultDeviceAllocatorImpl : thrust::device_malloc_allocator<T> {
using super_t = thrust::device_malloc_allocator<T>;
using pointer = thrust::device_ptr<T>;
template<typename U>
struct rebind
{
typedef XGBDefaultDeviceAllocatorImpl<U> other;
};
pointer allocate(size_t n) {
pointer ptr = super_t::allocate(n);
GlobalMemoryLogger().RegisterAllocation(ptr.get(), n * sizeof(T));
return ptr;
}
void deallocate(pointer ptr, size_t n) {
GlobalMemoryLogger().RegisterDeallocation(ptr.get(), n * sizeof(T));
return super_t::deallocate(ptr, n);
}
};
/**
* \brief Caching memory allocator, uses cub::CachingDeviceAllocator as a back-end and logs allocations if verbose. Does not initialise memory on construction.
*/
template <class T>
struct XGBCachingDeviceAllocatorImpl : thrust::device_malloc_allocator<T> {
using pointer = thrust::device_ptr<T>;
template<typename U>
struct rebind
{
typedef XGBCachingDeviceAllocatorImpl<U> other;
};
cub::CachingDeviceAllocator& GetGlobalCachingAllocator ()
{
// Configure allocator with maximum cached bin size of ~1GB and no limit on
// maximum cached bytes
static cub::CachingDeviceAllocator *allocator = new cub::CachingDeviceAllocator(2, 9, 29);
return *allocator;
}
pointer allocate(size_t n) {
T *ptr;
GetGlobalCachingAllocator().DeviceAllocate(reinterpret_cast<void **>(&ptr),
n * sizeof(T));
pointer thrust_ptr(ptr);
GlobalMemoryLogger().RegisterAllocation(thrust_ptr.get(), n * sizeof(T));
return thrust_ptr;
}
void deallocate(pointer ptr, size_t n) {
GlobalMemoryLogger().RegisterDeallocation(ptr.get(), n * sizeof(T));
GetGlobalCachingAllocator().DeviceFree(ptr.get());
}
__host__ __device__
void construct(T *)
{
// no-op
}
};
};
// Declare xgboost allocators
// Replacement of allocator with custom backend should occur here
template <typename T>
using XGBDeviceAllocator = detail::XGBDefaultDeviceAllocatorImpl<T>;
/*! Be careful that the initialization constructor is a no-op, which means calling
* `vec.resize(n, 1)` won't initialize the memory region to 1. */
template <typename T>
using XGBCachingDeviceAllocator = detail::XGBCachingDeviceAllocatorImpl<T>;
/** \brief Specialisation of thrust device vector using custom allocator. */
template <typename T>
using device_vector = thrust::device_vector<T, XGBDeviceAllocator<T>>;
template <typename T>
using caching_device_vector = thrust::device_vector<T, XGBCachingDeviceAllocator<T>>;
/**
* \brief A double buffer, useful for algorithms like sort.
*/
template <typename T>
class DoubleBuffer {
public:
cub::DoubleBuffer<T> buff;
xgboost::common::Span<T> a, b;
DoubleBuffer() = default;
template <typename VectorT>
DoubleBuffer(VectorT *v1, VectorT *v2) {
a = xgboost::common::Span<T>(v1->data().get(), v1->size());
b = xgboost::common::Span<T>(v2->data().get(), v2->size());
buff = cub::DoubleBuffer<T>(a.data(), b.data());
}
size_t Size() const {
CHECK_EQ(a.size(), b.size());
return a.size();
}
cub::DoubleBuffer<T> &CubBuffer() { return buff; }
T *Current() { return buff.Current(); }
xgboost::common::Span<T> CurrentSpan() {
return xgboost::common::Span<T>{buff.Current(), Size()};
}
T *other() { return buff.Alternate(); }
};
/**
* \brief Copies device span to std::vector.
*
* \tparam T Generic type parameter.
* \param [in,out] dst Copy destination.
* \param src Copy source. Must be device memory.
*/
template <typename T>
void CopyDeviceSpanToVector(std::vector<T> *dst, xgboost::common::Span<T> src) {
CHECK_EQ(dst->size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T),
cudaMemcpyDeviceToHost));
}
/**
* \brief Copies const device span to std::vector.
*
* \tparam T Generic type parameter.
* \param [in,out] dst Copy destination.
* \param src Copy source. Must be device memory.
*/
template <typename T>
void CopyDeviceSpanToVector(std::vector<T> *dst, xgboost::common::Span<const T> src) {
CHECK_EQ(dst->size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T),
cudaMemcpyDeviceToHost));
}
/**
* \brief Copies std::vector to device span.
*
* \tparam T Generic type parameter.
* \param dst Copy destination. Must be device memory.
* \param src Copy source.
*/
template <typename T>
void CopyVectorToDeviceSpan(xgboost::common::Span<T> dst ,const std::vector<T>&src)
{
CHECK_EQ(dst.size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst.data(), src.data(), dst.size() * sizeof(T),
cudaMemcpyHostToDevice));
}
/**
* \brief Device to device memory copy from src to dst. Spans must be the same size. Use subspan to
* copy from a smaller array to a larger array.
*
* \tparam T Generic type parameter.
* \param dst Copy destination. Must be device memory.
* \param src Copy source. Must be device memory.
*/
template <typename T>
void CopyDeviceSpan(xgboost::common::Span<T> dst,
xgboost::common::Span<T> src) {
CHECK_EQ(dst.size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst.data(), src.data(), dst.size() * sizeof(T),
cudaMemcpyDeviceToDevice));
}
/*! \brief Helper for allocating large block of memory. */
class BulkAllocator {
std::vector<char *> d_ptr_;
std::vector<size_t> size_;
std::vector<int> device_idx_;
static const int kAlign = 256;
size_t AlignRoundUp(size_t n) const {
n = (n + kAlign - 1) / kAlign;
return n * kAlign;
}
template <typename T>
size_t GetSizeBytes(xgboost::common::Span<T> *first_vec, size_t first_size) {
return AlignRoundUp(first_size * sizeof(T));
}
template <typename T, typename... Args>
size_t GetSizeBytes(xgboost::common::Span<T> *first_vec, size_t first_size, Args... args) {
return GetSizeBytes<T>(first_vec, first_size) + GetSizeBytes(args...);
}
template <typename T>
void AllocateSpan(int device_idx, char *ptr, xgboost::common::Span<T> *first_vec,
size_t first_size) {
*first_vec = xgboost::common::Span<T>(reinterpret_cast<T *>(ptr), first_size);
}
template <typename T, typename... Args>
void AllocateSpan(int device_idx, char *ptr, xgboost::common::Span<T> *first_vec,
size_t first_size, Args... args) {
AllocateSpan<T>(device_idx, ptr, first_vec, first_size);
ptr += AlignRoundUp(first_size * sizeof(T));
AllocateSpan(device_idx, ptr, args...);
}
char *AllocateDevice(int device_idx, size_t bytes) {
safe_cuda(cudaSetDevice(device_idx));
XGBDeviceAllocator<char> allocator;
return allocator.allocate(bytes).get();
}
template <typename T>
size_t GetSizeBytes(DoubleBuffer<T> *first_vec, size_t first_size) {
return 2 * AlignRoundUp(first_size * sizeof(T));
}
template <typename T, typename... Args>
size_t GetSizeBytes(DoubleBuffer<T> *first_vec, size_t first_size, Args... args) {
return GetSizeBytes<T>(first_vec, first_size) + GetSizeBytes(args...);
}
template <typename T>
void AllocateSpan(int device_idx, char *ptr, DoubleBuffer<T> *first_vec,
size_t first_size) {
auto ptr1 = reinterpret_cast<T *>(ptr);
auto ptr2 = ptr1 + first_size;
first_vec->a = xgboost::common::Span<T>(ptr1, first_size);
first_vec->b = xgboost::common::Span<T>(ptr2, first_size);
first_vec->buff.d_buffers[0] = ptr1;
first_vec->buff.d_buffers[1] = ptr2;
first_vec->buff.selector = 0;
}
template <typename T, typename... Args>
void AllocateSpan(int device_idx, char *ptr, DoubleBuffer<T> *first_vec,
size_t first_size, Args... args) {
AllocateSpan<T>(device_idx, ptr, first_vec, first_size);
ptr += (AlignRoundUp(first_size * sizeof(T)) * 2);
AllocateSpan(device_idx, ptr, args...);
}
public:
BulkAllocator() = default;
// prevent accidental copying, moving or assignment of this object
BulkAllocator(const BulkAllocator&) = delete;
BulkAllocator(BulkAllocator&&) = delete;
void operator=(const BulkAllocator&) = delete;
void operator=(BulkAllocator&&) = delete;
/*!
* \brief Clear the bulk allocator.
*
* This frees the GPU memory managed by this allocator.
*/
void Clear() {
for (size_t i = 0; i < d_ptr_.size(); i++) { // NOLINT(modernize-loop-convert)
if (d_ptr_[i] != nullptr) {
safe_cuda(cudaSetDevice(device_idx_[i]));
XGBDeviceAllocator<char> allocator;
allocator.deallocate(thrust::device_ptr<char>(d_ptr_[i]), size_[i]);
d_ptr_[i] = nullptr;
}
}
}
~BulkAllocator() {
Clear();
}
// returns sum of bytes for all allocations
size_t Size() {
return std::accumulate(size_.begin(), size_.end(), static_cast<size_t>(0));
}
template <typename... Args>
void Allocate(int device_idx, Args... args) {
size_t size = GetSizeBytes(args...);
char *ptr = AllocateDevice(device_idx, size);
AllocateSpan(device_idx, ptr, args...);
d_ptr_.push_back(ptr);
size_.push_back(size);
device_idx_.push_back(device_idx);
}
};
// Keep track of pinned memory allocation
struct PinnedMemory {
void *temp_storage{nullptr};
size_t temp_storage_bytes{0};
~PinnedMemory() { Free(); }
template <typename T>
xgboost::common::Span<T> GetSpan(size_t size) {
size_t num_bytes = size * sizeof(T);
if (num_bytes > temp_storage_bytes) {
Free();
safe_cuda(cudaMallocHost(&temp_storage, num_bytes));
temp_storage_bytes = num_bytes;
}
return xgboost::common::Span<T>(static_cast<T *>(temp_storage), size);
}
void Free() {
if (temp_storage != nullptr) {
safe_cuda(cudaFreeHost(temp_storage));
}
}
};
// Keep track of cub library device allocation
struct CubMemory {
void *d_temp_storage;
size_t temp_storage_bytes;
// Thrust
using value_type = char; // NOLINT
CubMemory() : d_temp_storage(nullptr), temp_storage_bytes(0) {}
~CubMemory() { Free(); }
template <typename T>
xgboost::common::Span<T> GetSpan(size_t size) {
this->LazyAllocate(size * sizeof(T));
return xgboost::common::Span<T>(static_cast<T*>(d_temp_storage), size);
}
void Free() {
if (this->IsAllocated()) {
XGBDeviceAllocator<uint8_t> allocator;
allocator.deallocate(thrust::device_ptr<uint8_t>(static_cast<uint8_t *>(d_temp_storage)),
temp_storage_bytes);
d_temp_storage = nullptr;
temp_storage_bytes = 0;
}
}
void LazyAllocate(size_t num_bytes) {
if (num_bytes > temp_storage_bytes) {
Free();
XGBDeviceAllocator<uint8_t> allocator;
d_temp_storage = static_cast<void *>(allocator.allocate(num_bytes).get());
temp_storage_bytes = num_bytes;
}
}
// Thrust
char *allocate(std::ptrdiff_t num_bytes) { // NOLINT
LazyAllocate(num_bytes);
return reinterpret_cast<char *>(d_temp_storage);
}
// Thrust
void deallocate(char *ptr, size_t n) { // NOLINT
// Do nothing
}
bool IsAllocated() { return d_temp_storage != nullptr; }
};
/*
* Utility functions
*/
// Load balancing search
template <typename CoordinateT, typename SegmentT, typename OffsetT>
void FindMergePartitions(int device_idx, CoordinateT *d_tile_coordinates,
size_t num_tiles, int tile_size, SegmentT segments,
OffsetT num_rows, OffsetT num_elements) {
dh::LaunchN(device_idx, num_tiles + 1, [=] __device__(int idx) {
OffsetT diagonal = idx * tile_size;
CoordinateT tile_coordinate;
cub::CountingInputIterator<OffsetT> nonzero_indices(0);
// Search the merge path
// Cast to signed integer as this function can have negatives
cub::MergePathSearch(static_cast<int64_t>(diagonal), segments + 1,
nonzero_indices, static_cast<int64_t>(num_rows),
static_cast<int64_t>(num_elements), tile_coordinate);
// Output starting offset
d_tile_coordinates[idx] = tile_coordinate;
});
}
template <int TILE_SIZE, int ITEMS_PER_THREAD, int BLOCK_THREADS,
typename OffsetT, typename CoordinateT, typename FunctionT,
typename SegmentIterT>
__global__ void LbsKernel(CoordinateT *d_coordinates,
SegmentIterT segment_end_offsets, FunctionT f,
OffsetT num_segments) {
int tile = blockIdx.x;
CoordinateT tile_start_coord = d_coordinates[tile];
CoordinateT tile_end_coord = d_coordinates[tile + 1];
int64_t tile_num_rows = tile_end_coord.x - tile_start_coord.x;
int64_t tile_num_elements = tile_end_coord.y - tile_start_coord.y;
cub::CountingInputIterator<OffsetT> tile_element_indices(tile_start_coord.y);
CoordinateT thread_start_coord;
typedef typename std::iterator_traits<SegmentIterT>::value_type SegmentT;
__shared__ struct {
SegmentT tile_segment_end_offsets[TILE_SIZE + 1];
SegmentT output_segment[TILE_SIZE];
} temp_storage;
for (auto item : dh::BlockStrideRange(int(0), int(tile_num_rows + 1))) {
temp_storage.tile_segment_end_offsets[item] =
segment_end_offsets[min(static_cast<size_t>(tile_start_coord.x + item),
static_cast<size_t>(num_segments - 1))];
}
__syncthreads();
int64_t diag = threadIdx.x * ITEMS_PER_THREAD;
// Cast to signed integer as this function can have negatives
cub::MergePathSearch(diag, // Diagonal
temp_storage.tile_segment_end_offsets, // List A
tile_element_indices, // List B
tile_num_rows, tile_num_elements, thread_start_coord);
CoordinateT thread_current_coord = thread_start_coord;
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM) {
if (tile_element_indices[thread_current_coord.y] <
temp_storage.tile_segment_end_offsets[thread_current_coord.x]) {
temp_storage.output_segment[thread_current_coord.y] =
thread_current_coord.x + tile_start_coord.x;
++thread_current_coord.y;
} else {
++thread_current_coord.x;
}
}
__syncthreads();
for (auto item : dh::BlockStrideRange(int(0), int(tile_num_elements))) {
f(tile_start_coord.y + item, temp_storage.output_segment[item]);
}
}
template <typename FunctionT, typename SegmentIterT, typename OffsetT>
void SparseTransformLbs(int device_idx, dh::CubMemory *temp_memory,
OffsetT count, SegmentIterT segments,
OffsetT num_segments, FunctionT f) {
typedef typename cub::CubVector<OffsetT, 2>::Type CoordinateT;
dh::safe_cuda(cudaSetDevice(device_idx));
const int BLOCK_THREADS = 256;
const int ITEMS_PER_THREAD = 1;
const int TILE_SIZE = BLOCK_THREADS * ITEMS_PER_THREAD;
auto num_tiles = xgboost::common::DivRoundUp(count + num_segments, BLOCK_THREADS);
CHECK(num_tiles < std::numeric_limits<unsigned int>::max());
temp_memory->LazyAllocate(sizeof(CoordinateT) * (num_tiles + 1));
CoordinateT *tmp_tile_coordinates =
reinterpret_cast<CoordinateT *>(temp_memory->d_temp_storage);
FindMergePartitions(device_idx, tmp_tile_coordinates, num_tiles,
BLOCK_THREADS, segments, num_segments, count);
LbsKernel<TILE_SIZE, ITEMS_PER_THREAD, BLOCK_THREADS, OffsetT>
<<<uint32_t(num_tiles), BLOCK_THREADS>>>(tmp_tile_coordinates,
segments + 1, f, num_segments);
}
template <typename FunctionT, typename OffsetT>
void DenseTransformLbs(int device_idx, OffsetT count, OffsetT num_segments,
FunctionT f) {
CHECK(count % num_segments == 0) << "Data is not dense.";
LaunchN(device_idx, count, [=] __device__(OffsetT idx) {
OffsetT segment = idx / (count / num_segments);
f(idx, segment);
});
}
/**
* \fn template <typename FunctionT, typename SegmentIterT, typename OffsetT>
* void TransformLbs(int device_idx, dh::CubMemory *temp_memory, OffsetT count,
* SegmentIterT segments, OffsetT num_segments, bool is_dense, FunctionT f)
*
* \brief Load balancing search function. Reads a CSR type matrix description
* and allows a function to be executed on each element. Search 'modern GPU load
* balancing search' for more information.
*
* \author Rory
* \date 7/9/2017
*
* \tparam FunctionT Type of the function t.
* \tparam SegmentIterT Type of the segments iterator.
* \tparam OffsetT Type of the offset.
* \param device_idx Zero-based index of the device.
* \param [in,out] temp_memory Temporary memory allocator.
* \param count Number of elements.
* \param segments Device pointer to segments.
* \param num_segments Number of segments.
* \param is_dense True if this object is dense.
* \param f Lambda to be executed on matrix elements.
*/
template <typename FunctionT, typename SegmentIterT, typename OffsetT>
void TransformLbs(int device_idx, dh::CubMemory *temp_memory, OffsetT count,
SegmentIterT segments, OffsetT num_segments, bool is_dense,
FunctionT f) {
if (is_dense) {
DenseTransformLbs(device_idx, count, num_segments, f);
} else {
SparseTransformLbs(device_idx, temp_memory, count, segments, num_segments,
f);
}
}
/**
* @brief Helper function to sort the pairs using cub's segmented RadixSortPairs
* @param tmp_mem cub temporary memory info
* @param keys keys double-buffer array
* @param vals the values double-buffer array
* @param nVals number of elements in the array
* @param nSegs number of segments
* @param offsets the segments
*/
template <typename T1, typename T2>
void SegmentedSort(dh::CubMemory *tmp_mem, dh::DoubleBuffer<T1> *keys,
dh::DoubleBuffer<T2> *vals, int nVals, int nSegs,
xgboost::common::Span<int> offsets, int start = 0,
int end = sizeof(T1) * 8) {
size_t tmpSize;
dh::safe_cuda(cub::DeviceSegmentedRadixSort::SortPairs(
NULL, tmpSize, keys->CubBuffer(), vals->CubBuffer(), nVals, nSegs,
offsets.data(), offsets.data() + 1, start, end));
tmp_mem->LazyAllocate(tmpSize);
dh::safe_cuda(cub::DeviceSegmentedRadixSort::SortPairs(
tmp_mem->d_temp_storage, tmpSize, keys->CubBuffer(), vals->CubBuffer(),
nVals, nSegs, offsets.data(), offsets.data() + 1, start, end));
}
/**
* @brief Helper function to perform device-wide sum-reduction
* @param tmp_mem cub temporary memory info
* @param in the input array to be reduced
* @param out the output reduced value
* @param nVals number of elements in the input array
*/
template <typename T>
void SumReduction(dh::CubMemory &tmp_mem, xgboost::common::Span<T> in, xgboost::common::Span<T> out,
int nVals) {
size_t tmpSize;
dh::safe_cuda(
cub::DeviceReduce::Sum(NULL, tmpSize, in.data(), out.data(), nVals));
tmp_mem.LazyAllocate(tmpSize);
dh::safe_cuda(cub::DeviceReduce::Sum(tmp_mem.d_temp_storage, tmpSize,
in.data(), out.data(), nVals));
}
/**
* @brief Helper function to perform device-wide sum-reduction, returns to the
* host
* @param tmp_mem cub temporary memory info
* @param in the input array to be reduced
* @param nVals number of elements in the input array
*/
template <typename T>
typename std::iterator_traits<T>::value_type SumReduction(
dh::CubMemory &tmp_mem, T in, int nVals) {
using ValueT = typename std::iterator_traits<T>::value_type;
size_t tmpSize {0};
ValueT *dummy_out = nullptr;
dh::safe_cuda(cub::DeviceReduce::Sum(nullptr, tmpSize, in, dummy_out, nVals));
// Allocate small extra memory for the return value
tmp_mem.LazyAllocate(tmpSize + sizeof(ValueT));
auto ptr = reinterpret_cast<ValueT *>(tmp_mem.d_temp_storage) + 1;
dh::safe_cuda(cub::DeviceReduce::Sum(
reinterpret_cast<void *>(ptr), tmpSize, in,
reinterpret_cast<ValueT *>(tmp_mem.d_temp_storage),
nVals));
ValueT sum;
dh::safe_cuda(cudaMemcpy(&sum, tmp_mem.d_temp_storage, sizeof(ValueT),
cudaMemcpyDeviceToHost));
return sum;
}
/**
* @brief Fill a given constant value across all elements in the buffer
* @param out the buffer to be filled
* @param len number of elements i the buffer
* @param def default value to be filled
*/
template <typename T, int BlkDim = 256, int ItemsPerThread = 4>
void FillConst(int device_idx, T *out, int len, T def) {
dh::LaunchN<ItemsPerThread, BlkDim>(device_idx, len,
[=] __device__(int i) { out[i] = def; });
}
/**
* @brief gather elements
* @param out1 output gathered array for the first buffer
* @param in1 first input buffer
* @param out2 output gathered array for the second buffer
* @param in2 second input buffer
* @param instId gather indices
* @param nVals length of the buffers
*/
template <typename T1, typename T2, int BlkDim = 256, int ItemsPerThread = 4>
void Gather(int device_idx, T1 *out1, const T1 *in1, T2 *out2, const T2 *in2,
const int *instId, int nVals) {
dh::LaunchN<ItemsPerThread, BlkDim>(device_idx, nVals,
[=] __device__(int i) {
int iid = instId[i];
T1 v1 = in1[iid];
T2 v2 = in2[iid];
out1[i] = v1;
out2[i] = v2;
});
}
/**
* @brief gather elements
* @param out output gathered array
* @param in input buffer
* @param instId gather indices
* @param nVals length of the buffers
*/
template <typename T, int BlkDim = 256, int ItemsPerThread = 4>
void Gather(int device_idx, T *out, const T *in, const int *instId, int nVals) {
dh::LaunchN<ItemsPerThread, BlkDim>(device_idx, nVals,
[=] __device__(int i) {
int iid = instId[i];
out[i] = in[iid];
});
}
class SaveCudaContext {
private:
int saved_device_;
public:
template <typename Functor>
explicit SaveCudaContext (Functor func) : saved_device_{-1} {
// When compiled with CUDA but running on CPU only device,
// cudaGetDevice will fail.
try {
safe_cuda(cudaGetDevice(&saved_device_));
} catch (const dmlc::Error &except) {
saved_device_ = -1;
}
func();
}
~SaveCudaContext() {
if (saved_device_ != -1) {
safe_cuda(cudaSetDevice(saved_device_));
}
}
};
/**
* \class AllReducer
*
* \brief All reducer class that manages its own communication group and
* streams. Must be initialised before use. If XGBoost is compiled without NCCL
* this is a dummy class that will error if used with more than one GPU.
*/
class AllReducer {
bool initialised_;
size_t allreduce_bytes_; // Keep statistics of the number of bytes communicated
size_t allreduce_calls_; // Keep statistics of the number of reduce calls
std::vector<size_t> host_data; // Used for all reduce on host
#ifdef XGBOOST_USE_NCCL
ncclComm_t comm;
cudaStream_t stream;
int device_ordinal;
ncclUniqueId id;
#endif
public:
AllReducer() : initialised_(false), allreduce_bytes_(0),
allreduce_calls_(0) {}
/**
* \brief Initialise with the desired device ordinal for this communication
* group.
*
* \param device_ordinal The device ordinal.
*/
void Init(int _device_ordinal) {
#ifdef XGBOOST_USE_NCCL
/** \brief this >monitor . init. */
device_ordinal = _device_ordinal;
id = GetUniqueId();
dh::safe_cuda(cudaSetDevice(device_ordinal));
dh::safe_nccl(ncclCommInitRank(&comm, rabit::GetWorldSize(), id, rabit::GetRank()));
safe_cuda(cudaStreamCreate(&stream));
initialised_ = true;
#endif
}
~AllReducer() {
#ifdef XGBOOST_USE_NCCL
if (initialised_) {
dh::safe_cuda(cudaStreamDestroy(stream));
ncclCommDestroy(comm);
}
if (xgboost::ConsoleLogger::ShouldLog(xgboost::ConsoleLogger::LV::kDebug)) {
LOG(CONSOLE) << "======== NCCL Statistics========";
LOG(CONSOLE) << "AllReduce calls: " << allreduce_calls_;
LOG(CONSOLE) << "AllReduce total MiB communicated: " << allreduce_bytes_/1048576;
}
#endif
}
/**
* \brief Allreduce. Use in exactly the same way as NCCL but without needing
* streams or comms.
*
* \param sendbuff The sendbuff.
* \param recvbuff The recvbuff.
* \param count Number of elements.
*/
void AllReduceSum(const double *sendbuff, double *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal));
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclDouble, ncclSum, comm, stream));
allreduce_bytes_ += count * sizeof(double);
allreduce_calls_ += 1;
#endif
}
/**
* \brief Allreduce. Use in exactly the same way as NCCL but without needing
* streams or comms.
*
* \param sendbuff The sendbuff.
* \param recvbuff The recvbuff.
* \param count Number of elements.
*/
void AllReduceSum(const float *sendbuff, float *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal));
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclFloat, ncclSum, comm, stream));
allreduce_bytes_ += count * sizeof(float);
allreduce_calls_ += 1;
#endif
}
/**
* \brief Allreduce. Use in exactly the same way as NCCL but without needing streams or comms.
*
* \param count Number of.
*
* \param sendbuff The sendbuff.
* \param recvbuff The recvbuff.
* \param count Number of.
*/
void AllReduceSum(const int64_t *sendbuff, int64_t *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal));
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclInt64, ncclSum, comm, stream));
#endif
}
/**
* \fn void Synchronize()
*
* \brief Synchronizes the entire communication group.
*/
void Synchronize() {
#ifdef XGBOOST_USE_NCCL
dh::safe_cuda(cudaSetDevice(device_ordinal));
dh::safe_cuda(cudaStreamSynchronize(stream));
#endif
};
#ifdef XGBOOST_USE_NCCL
/**
* \fn ncclUniqueId GetUniqueId()
*
* \brief Gets the Unique ID from NCCL to be used in setting up interprocess
* communication
*
* \return the Unique ID
*/
ncclUniqueId GetUniqueId() {
static const int RootRank = 0;
ncclUniqueId id;
if (rabit::GetRank() == RootRank) {
dh::safe_nccl(ncclGetUniqueId(&id));
}
rabit::Broadcast(
(void*)&id,
(size_t)sizeof(ncclUniqueId),
(int)RootRank);
return id;
}
#endif
/** \brief Perform max all reduce operation on the host. This function first
* reduces over omp threads then over nodes using rabit (which is not thread
* safe) using the master thread. Uses naive reduce algorithm for local
* threads, don't expect this to scale.*/
void HostMaxAllReduce(std::vector<size_t> *p_data) {
#ifdef XGBOOST_USE_NCCL
auto &data = *p_data;
// Wait in case some other thread is accessing host_data
#pragma omp barrier
// Reset shared buffer
#pragma omp single
{
host_data.resize(data.size());
std::fill(host_data.begin(), host_data.end(), size_t(0));
}
// Threads update shared array
for (auto i = 0ull; i < data.size(); i++) {
#pragma omp critical
{ host_data[i] = std::max(host_data[i], data[i]); }
}
// Wait until all threads are finished
#pragma omp barrier
// One thread performs all reduce across distributed nodes
#pragma omp master
{
rabit::Allreduce<rabit::op::Max, size_t>(host_data.data(),
host_data.size());
}
#pragma omp barrier
// Threads can now read back all reduced values
for (auto i = 0ull; i < data.size(); i++) {
data[i] = host_data[i];
}
#endif
}
};
template <typename T,
typename IndexT = typename xgboost::common::Span<T>::index_type>
xgboost::common::Span<T> ToSpan(
device_vector<T>& vec,
IndexT offset = 0,
IndexT size = std::numeric_limits<size_t>::max()) {
size = size == std::numeric_limits<size_t>::max() ? vec.size() : size;
CHECK_LE(offset + size, vec.size());
return {vec.data().get() + offset, size};
}
template <typename T>
xgboost::common::Span<T> ToSpan(thrust::device_vector<T>& vec,
size_t offset, size_t size) {
return ToSpan(vec, offset, size);
}
// thrust begin, similiar to std::begin
template <typename T>
thrust::device_ptr<T> tbegin(xgboost::HostDeviceVector<T>& vector) { // NOLINT
return thrust::device_ptr<T>(vector.DevicePointer());
}
template <typename T>
thrust::device_ptr<T> tend(xgboost::HostDeviceVector<T>& vector) { // // NOLINT
return tbegin(vector) + vector.Size();
}
template <typename T>
thrust::device_ptr<T const> tcbegin(xgboost::HostDeviceVector<T> const& vector) {
return thrust::device_ptr<T const>(vector.ConstDevicePointer());
}
template <typename T>
thrust::device_ptr<T const> tcend(xgboost::HostDeviceVector<T> const& vector) {
return tcbegin(vector) + vector.Size();
}
template <typename FunctionT>
class LauncherItr {
public:
int idx;
FunctionT f;
XGBOOST_DEVICE LauncherItr() : idx(0) {}
XGBOOST_DEVICE LauncherItr(int idx, FunctionT f) : idx(idx), f(f) {}
XGBOOST_DEVICE LauncherItr &operator=(int output) {
f(idx, output);
return *this;
}
};
/**
* \brief Thrust compatible iterator type - discards algorithm output and launches device lambda
* with the index of the output and the algorithm output as arguments.
*
* \author Rory
* \date 7/9/2017
*
* \tparam FunctionT Type of the function t.
*/
template <typename FunctionT>
class DiscardLambdaItr {
public:
// Required iterator traits
using self_type = DiscardLambdaItr; // NOLINT
using difference_type = ptrdiff_t; // NOLINT
using value_type = void; // NOLINT
using pointer = value_type *; // NOLINT
using reference = LauncherItr<FunctionT>; // NOLINT
using iterator_category = typename thrust::detail::iterator_facade_category<
thrust::any_system_tag, thrust::random_access_traversal_tag, value_type,
reference>::type; // NOLINT
private:
difference_type offset_;
FunctionT f_;
public:
XGBOOST_DEVICE explicit DiscardLambdaItr(FunctionT f) : offset_(0), f_(f) {}
XGBOOST_DEVICE DiscardLambdaItr(difference_type offset, FunctionT f)
: offset_(offset), f_(f) {}
XGBOOST_DEVICE self_type operator+(const int &b) const {
return DiscardLambdaItr(offset_ + b, f_);
}
XGBOOST_DEVICE self_type operator++() {
offset_++;
return *this;
}
XGBOOST_DEVICE self_type operator++(int) {
self_type retval = *this;
offset_++;
return retval;
}
XGBOOST_DEVICE self_type &operator+=(const int &b) {
offset_ += b;
return *this;
}
XGBOOST_DEVICE reference operator*() const {
return LauncherItr<FunctionT>(offset_, f_);
}
XGBOOST_DEVICE reference operator[](int idx) {
self_type offset = (*this) + idx;
return *offset;
}
};
// Atomic add function for gradients
template <typename OutputGradientT, typename InputGradientT>
DEV_INLINE void AtomicAddGpair(OutputGradientT* dest,
const InputGradientT& gpair) {
auto dst_ptr = reinterpret_cast<typename OutputGradientT::ValueT*>(dest);
atomicAdd(dst_ptr,
static_cast<typename OutputGradientT::ValueT>(gpair.GetGrad()));
atomicAdd(dst_ptr + 1,
static_cast<typename OutputGradientT::ValueT>(gpair.GetHess()));
}
} // namespace dh