* - pairwise ranking objective implementation on gpu
- there are couple of more algorithms (ndcg and map) for which support will be added
as follow-up pr's
- with no label groups defined, get gradient is 90x faster on gpu (120m instance
mortgage dataset)
- it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
for the cpu implementation)
* Add JSON config to rank obj.
* Move get transpose into cc.
* Clean up headers in host device vector, remove thrust dependency.
* Move span and host device vector into public.
* Install c++ headers.
* Short notes for c and c++.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Initial support for cudf integration.
* Add two C APIs for consuming data and metainfo.
* Add CopyFrom for SimpleCSRSource as a generic function to consume the data.
* Add FromDeviceColumnar for consuming device data.
* Add new MetaInfo::SetInfo for consuming label, weight etc.
* - set the appropriate device before freeing device memory...
- pr #4532 added a global memory tracker/logger to keep track of number of (de)allocations
and peak memory usage on a per device basis.
- this pr adds the appropriate check to make sure that the (de)allocation counts and memory usages
makes sense for the device. since verbosity is typically increased on debug/non-retail builds.
* - pre-create cub allocators and reuse them
- create them once and not resize them dynamically. we need to ensure that these allocators
are created and destroyed exactly once so that the appropriate device id's are set
* Combine thread launches into single launch per tree for gpu_hist
algorithm.
* Address deprecation warning
* Add manual column sampler constructor
* Turn off omp dynamic to get a guaranteed number of threads
* Enable openmp in cuda code
* Optimisations for gpu_hist.
* Use streams to overlap operations.
* ColumnSampler now uses HostDeviceVector to prevent repeatedly copying feature vectors to the device.
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
* Initial commit to support multi-node multi-gpu xgboost using dask
* Fixed NCCL initialization by not ignoring the opg parameter.
- it now crashes on NCCL initialization, but at least we're attempting it properly
* At the root node, perform a rabit::Allreduce to get initial sum_gradient across workers
* Synchronizing in a couple of more places.
- now the workers don't go down, but just hang
- no more "wild" values of gradients
- probably needs syncing in more places
* Added another missing max-allreduce operation inside BuildHistLeftRight
* Removed unnecessary collective operations.
* Simplified rabit::Allreduce() sync of gradient sums.
* Removed unnecessary rabit syncs around ncclAllReduce.
- this improves performance _significantly_ (7x faster for overall training,
20x faster for xgboost proper)
* pulling in latest xgboost
* removing changes to updater_quantile_hist.cc
* changing use_nccl_opg initialization, removing unnecessary if statements
* added definition for opaque ncclUniqueId struct to properly encapsulate GetUniqueId
* placing struct defintion in guard to avoid duplicate code errors
* addressing linting errors
* removing
* removing additional arguments to AllReduer initialization
* removing distributed flag
* making comm init symmetric
* removing distributed flag
* changing ncclCommInit to support multiple modalities
* fix indenting
* updating ncclCommInitRank block with necessary group calls
* fix indenting
* adding print statement, and updating accessor in vector
* improving print statement to end-line
* generalizing nccl_rank construction using rabit
* assume device_ordinals is the same for every node
* test, assume device_ordinals is identical for all nodes
* test, assume device_ordinals is unique for all nodes
* changing names of offset variable to be more descriptive, editing indenting
* wrapping ncclUniqueId GetUniqueId() and aesthetic changes
* adding synchronization, and tests for distributed
* adding to tests
* fixing broken #endif
* fixing initialization of gpu histograms, correcting errors in tests
* adding to contributors list
* adding distributed tests to jenkins
* fixing bad path in distributed test
* debugging
* adding kubernetes for distributed tests
* adding proper import for OrderedDict
* adding urllib3==1.22 to address ordered_dict import error
* added sleep to allow workers to save their models for comparison
* adding name to GPU contributors under docs
* Remove GHistRow, GHistEntry, GHistIndexRow.
* Remove kSimpleStats.
* Remove CheckInfo, SetLeafVec in GradStats and in SKStats.
* Clean up the GradStats.
* Cleanup calcgain.
* Move LossChangeMissing out of common.
* Remove [] operator from GHistIndexBlock.
* Unify logging facilities.
* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
- Improved GPU performance logging
- Only use one execute shards function
- Revert performance regression on multi-GPU
- Use threads to launch NCCL AllReduce
* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* Expand histogram memory dynamically to prevent large allocations for large tree depths (e.g. > 15)
* Remove GPU memory allocation messages. These are misleading as a large number of allocations are now dynamic.
* Fix appveyor R test
* Added finding quantiles on GPU.
- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
as those found by the old one, test thresholds in
tests/python-gpu/test_gpu_updaters.py have been adjusted.
* Adjustments and improved testing for finding quantiles on the GPU.
- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
* Upgrading to NCCL2
* Part - II of NCCL2 upgradation
- Doc updates to build with nccl2
- Dockerfile.gpu update for a correct CI build with nccl2
- Updated FindNccl package to have env-var NCCL_ROOT to take precedence
* Upgrading to v9.2 for CI workflow, since it has the nccl2 binaries available
* Added NCCL2 license + copy the nccl binaries into /usr location for the FindNccl module to find
* Set LD_LIBRARY_PATH variable to pick nccl2 binary at runtime
* Need the nccl2 library download instructions inside Dockerfile.release as well
* Use NCCL2 as a static library
* GPU binning and compression.
- binning and index compression are done inside the DeviceShard constructor
- in case of a DMatrix with multiple row batches, it is first converted into a single row batch
* Multi-GPU HostDeviceVector.
- HostDeviceVector instances can now span multiple devices, defined by GPUSet struct
- the interface of HostDeviceVector has been modified accordingly
- GPU objective functions are now multi-GPU
- GPU predicting from cache is now multi-GPU
- avoiding omp_set_num_threads() calls
- other minor changes